Answer
Verified
492.3k+ views
Hint: Identify the variables in the given equation and compare it to the geometrical equation of a parabola. Upon identifying the known and required variables find the points at which both the ends of the focal chord lie, then using the formula for distance between two points determine the length of focal chord.
Complete step-by-step answer:
Given data –
Equation of parabola is ${{\text{y}}^2} = 16{\text{x}}$ and one end of the focal chord lies at (1, 4)
The geometrical equation of a parabola is in the form
${{\text{y}}^2} = 4{\text{ax}}$, whereas the ends of its focal chord are in the form $\left( {{\text{a}}{{\text{t}}^2},2{\text{at}}} \right){\text{ and }}\left( {{\text{at}}_1^2,2{\text{at}}_1^2} \right)$respectively.
And the relation between ${\text{t and }}{{\text{t}}_1}{\text{ is }}{{\text{t}}_1} = \dfrac{{ - 1}}{{\text{t}}}$.
On Comparing the equation of parabola to given equation ${{\text{y}}^2} = 16{\text{x}}$, we get
a=4.
Comparing given point (1, 4) to$\left( {{\text{a}}{{\text{t}}^2},2{\text{at}}} \right)$, we get
2at = 4
⟹at=2
We know that a=2
$ \Rightarrow {\text{t = }}\dfrac{1}{2}$
$
{{\text{t}}_1} = \dfrac{{ - 1}}{{\text{t}}} \\
\Rightarrow {{\text{t}}_1} = - 2 \\
$
Now the other end of the focal chord is $\left( {{\text{at}}_1^2,2{\text{a}}{{\text{t}}_1}} \right)$
$ \Rightarrow \left( {4{{( - 2)}^2},2(4)( - 2)} \right) = \left( {16, - 16} \right)$
Now distance between the two points (1, 4) and (16, -16) is
$
{\text{D = }}\sqrt {{{({{\text{x}}_1} - {{\text{x}}_2})}^2} + {{({{\text{y}}_1} - {{\text{y}}_2})}^2}} \\
\Rightarrow {\text{ }}\sqrt {{{(1 - 16)}^2} + {{(4 + 16)}^2}} \\
\Rightarrow \sqrt {225 + 400} \\
\Rightarrow 25. \\
$
Hence the length of the focal chord of the given parabola is 25, which makes Option A the correct answer.
Note –
In this type of question first find out and compare the equation of the given parabola. Then find you’re a, t, ${{\text{t}}_1}$ acchording to the given data in the question. Then find out the distance of the focal chord. Knowing the parabolic equation and respective properties of the focal chord is essential.
Complete step-by-step answer:
Given data –
Equation of parabola is ${{\text{y}}^2} = 16{\text{x}}$ and one end of the focal chord lies at (1, 4)
The geometrical equation of a parabola is in the form
${{\text{y}}^2} = 4{\text{ax}}$, whereas the ends of its focal chord are in the form $\left( {{\text{a}}{{\text{t}}^2},2{\text{at}}} \right){\text{ and }}\left( {{\text{at}}_1^2,2{\text{at}}_1^2} \right)$respectively.
And the relation between ${\text{t and }}{{\text{t}}_1}{\text{ is }}{{\text{t}}_1} = \dfrac{{ - 1}}{{\text{t}}}$.
On Comparing the equation of parabola to given equation ${{\text{y}}^2} = 16{\text{x}}$, we get
a=4.
Comparing given point (1, 4) to$\left( {{\text{a}}{{\text{t}}^2},2{\text{at}}} \right)$, we get
2at = 4
⟹at=2
We know that a=2
$ \Rightarrow {\text{t = }}\dfrac{1}{2}$
$
{{\text{t}}_1} = \dfrac{{ - 1}}{{\text{t}}} \\
\Rightarrow {{\text{t}}_1} = - 2 \\
$
Now the other end of the focal chord is $\left( {{\text{at}}_1^2,2{\text{a}}{{\text{t}}_1}} \right)$
$ \Rightarrow \left( {4{{( - 2)}^2},2(4)( - 2)} \right) = \left( {16, - 16} \right)$
Now distance between the two points (1, 4) and (16, -16) is
$
{\text{D = }}\sqrt {{{({{\text{x}}_1} - {{\text{x}}_2})}^2} + {{({{\text{y}}_1} - {{\text{y}}_2})}^2}} \\
\Rightarrow {\text{ }}\sqrt {{{(1 - 16)}^2} + {{(4 + 16)}^2}} \\
\Rightarrow \sqrt {225 + 400} \\
\Rightarrow 25. \\
$
Hence the length of the focal chord of the given parabola is 25, which makes Option A the correct answer.
Note –
In this type of question first find out and compare the equation of the given parabola. Then find you’re a, t, ${{\text{t}}_1}$ acchording to the given data in the question. Then find out the distance of the focal chord. Knowing the parabolic equation and respective properties of the focal chord is essential.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE