If $\omega $ is a cube root of unity, then the value of determinant $\left| {\begin{array}{*{20}{c}}
{1 + \omega }&{{\omega ^2}}&\omega \\
{{\omega ^2} + \omega }&{ - \omega }&{{\omega ^2}} \\
{1 + {\omega ^2}}&\omega &{{\omega ^2}}
\end{array}} \right|$ is equal to
A. $ - 1 + \omega $
B. $1 - \omega $
C. 0
D. ${\omega ^2}$
Last updated date: 25th Mar 2023
•
Total views: 307.5k
•
Views today: 3.84k
Answer
307.5k+ views
Hint: In this question, we will use the property of the cube root of unity to solve the given determinant. it is given that $\omega $ is a cube root of unity. The value of $\omega $ = $\dfrac{{ - 1 + \sqrt 3 i}}{2}$. Now we will use the property which is $1 + \omega + {\omega ^2}{\text{ = 0}}$. We will use this property in expanding the determinant.
Complete step-by-step answer:
Now, performing the operation ${{\text{C}}_1} \to {{\text{C}}_1} + {{\text{C}}_2}$ on column \[{{\text{C}}_1}\].
Therefore,
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
{1 + \omega + {\omega ^2}}&{{\omega ^2}}&\omega \\
{{\omega ^2} + \omega - \omega }&{ - \omega }&{{\omega ^2}} \\
{1 + {\omega ^2} + \omega }&\omega &{{\omega ^2}}
\end{array}} \right|$
Using the property $1 + \omega + {\omega ^2}{\text{ = 0}}$, we get
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
0&{{\omega ^2}}&\omega \\
{{\omega ^2}}&{ - \omega }&{{\omega ^2}} \\
0&\omega &{{\omega ^2}}
\end{array}} \right|$
Taking ${\omega ^2}$ common from column \[{{\text{C}}_1}\] and $\omega $ from both the column \[{{\text{C}}_2}\] and \[{{\text{C}}_3}\], we get
$\vartriangle {\text{ = }}{\omega ^4}\left| {\begin{array}{*{20}{c}}
0&\omega &1 \\
1&{ - 1}&\omega \\
0&1&\omega
\end{array}} \right|$
Expanding the determinant through column \[{{\text{C}}_1}\].
$\vartriangle {\text{ = }}{\omega ^4}\{ 0\left| {\begin{array}{*{20}{c}}
{ - 1}&\omega \\
1&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
\omega &1 \\
1&\omega
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
\omega &1 \\
{ - 1}&\omega
\end{array}} \right|\} $
$\vartriangle {\text{ = }}{\omega ^4}\{ 0 - 1({\omega ^2} - 1) + 0\} $
$\vartriangle {\text{ = - }}{\omega ^4}({\omega ^2} - 1)$
Now the value of $\omega $ = $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ . So, we can see that the value of ${\omega ^3}$ = 1.
Therefore,
$\vartriangle {\text{ = - }}\omega ({\omega ^2} - 1) = {\text{ - (}}{\omega ^3} - \omega )$
$\vartriangle {\text{ = - (1 - }}\omega {\text{) = - 1 + }}\omega $
So, the answer is ${\text{ - 1 + }}\omega $ i.e. option (A).
Note: While solving such problems which have a cube root of unity, always apply the properties of the cube root to easily solve the given problem. If instead properties value of cube root is used it will also lead you to the correct answer but the process is very lengthy. Also, simplify the determinant by using properties of determinant before expanding it.
Complete step-by-step answer:
Now, performing the operation ${{\text{C}}_1} \to {{\text{C}}_1} + {{\text{C}}_2}$ on column \[{{\text{C}}_1}\].
Therefore,
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
{1 + \omega + {\omega ^2}}&{{\omega ^2}}&\omega \\
{{\omega ^2} + \omega - \omega }&{ - \omega }&{{\omega ^2}} \\
{1 + {\omega ^2} + \omega }&\omega &{{\omega ^2}}
\end{array}} \right|$
Using the property $1 + \omega + {\omega ^2}{\text{ = 0}}$, we get
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
0&{{\omega ^2}}&\omega \\
{{\omega ^2}}&{ - \omega }&{{\omega ^2}} \\
0&\omega &{{\omega ^2}}
\end{array}} \right|$
Taking ${\omega ^2}$ common from column \[{{\text{C}}_1}\] and $\omega $ from both the column \[{{\text{C}}_2}\] and \[{{\text{C}}_3}\], we get
$\vartriangle {\text{ = }}{\omega ^4}\left| {\begin{array}{*{20}{c}}
0&\omega &1 \\
1&{ - 1}&\omega \\
0&1&\omega
\end{array}} \right|$
Expanding the determinant through column \[{{\text{C}}_1}\].
$\vartriangle {\text{ = }}{\omega ^4}\{ 0\left| {\begin{array}{*{20}{c}}
{ - 1}&\omega \\
1&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
\omega &1 \\
1&\omega
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
\omega &1 \\
{ - 1}&\omega
\end{array}} \right|\} $
$\vartriangle {\text{ = }}{\omega ^4}\{ 0 - 1({\omega ^2} - 1) + 0\} $
$\vartriangle {\text{ = - }}{\omega ^4}({\omega ^2} - 1)$
Now the value of $\omega $ = $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ . So, we can see that the value of ${\omega ^3}$ = 1.
Therefore,
$\vartriangle {\text{ = - }}\omega ({\omega ^2} - 1) = {\text{ - (}}{\omega ^3} - \omega )$
$\vartriangle {\text{ = - (1 - }}\omega {\text{) = - 1 + }}\omega $
So, the answer is ${\text{ - 1 + }}\omega $ i.e. option (A).
Note: While solving such problems which have a cube root of unity, always apply the properties of the cube root to easily solve the given problem. If instead properties value of cube root is used it will also lead you to the correct answer but the process is very lengthy. Also, simplify the determinant by using properties of determinant before expanding it.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
