Answer
Verified
483.9k+ views
Hint – In this question it is given as ${A_1},{A_2},.......................{A_{2n - 1}}$ are n skew-symmetric matrices. A skew-symmetric matrix is one whose transpose is equal to a matrix multiplied with a negative sign that is${B^T} = - B$, use this condition while evaluating the submission to check whether it satisfies the options given in the question or not.
Complete step-by-step answer:
It is given that ${A_1},{A_2},.......................{A_{2n - 1}}$ are n skew-symmetric matrices of the same order.
So, we have to find out $B = \sum\limits_{r = 1}^n {\left( {2r - 1} \right){{\left( {{A_{2r - 1}}} \right)}^{2r - 1}}} $will be.
Now as we know the condition of skew-symmetric matrices of same order is
$ \Rightarrow {A_1}^T = - {A_1},{A_3}^T = - {A_3},.........................{A_{2n - 1}}^T = - {A_{2n - 1}}$ ………………….. (1)
[Where T is the transpose of the matrix]
Now expand the summation (from r = 1 to n) we have,
$ \Rightarrow B = \sum\limits_{r = 1}^n {\left( {2r - 1} \right){{\left( {{A_{2r - 1}}} \right)}^{2r - 1}}} $
$ \Rightarrow B = {A_1} + 3{\left( {{A_3}} \right)^3} + 5{\left( {{A_5}} \right)^5} + ................. + \left( {2n - 1} \right){\left( {{A_{2n - 1}}} \right)^{2n - 1}}$………………. (2)
Now take transpose of matrix B we have,
$ \Rightarrow {B^T} = {A_1}^T + 3{\left( {{A_3}^T} \right)^3} + 5{\left( {{A_5}^T} \right)^5} + ................. + \left( {2n - 1} \right){\left( {{A_{2n - 1}}^T} \right)^{2n - 1}}$
Now from equation (1) we have,
$ \Rightarrow {B^T} = - {A_1} + 3{\left( { - {A_3}} \right)^3} + 5{\left( { - {A_5}} \right)^5} + ................. + \left( {2n - 1} \right){\left( { - {A_{2n - 1}}} \right)^{2n - 1}}$
Now take (-) common we have,
$ \Rightarrow {B^T} = - \left[ {{A_1} + 3{{\left( {{A_3}} \right)}^3} + 5{{\left( {{A_5}} \right)}^5} + ................. + \left( {2n - 1} \right){{\left( {{A_{2n - 1}}} \right)}^{2n - 1}}} \right]$
Now from equation (2) we have,
$ \Rightarrow {B^T} = - B$
Which is the condition of skew-symmetric.
So, the matrix B is a skew-symmetric matrix.
Hence option (b) is correct.
Note – Whenever we face such types of problems the key concept is to use the gist of the basic definition of symmetric and skew-symmetric matrix. A symmetric matrix is one which even after transposed gives us the same matrix. Use these concepts of symmetric and skew-symmetric matrix to get the right option for the question.
Complete step-by-step answer:
It is given that ${A_1},{A_2},.......................{A_{2n - 1}}$ are n skew-symmetric matrices of the same order.
So, we have to find out $B = \sum\limits_{r = 1}^n {\left( {2r - 1} \right){{\left( {{A_{2r - 1}}} \right)}^{2r - 1}}} $will be.
Now as we know the condition of skew-symmetric matrices of same order is
$ \Rightarrow {A_1}^T = - {A_1},{A_3}^T = - {A_3},.........................{A_{2n - 1}}^T = - {A_{2n - 1}}$ ………………….. (1)
[Where T is the transpose of the matrix]
Now expand the summation (from r = 1 to n) we have,
$ \Rightarrow B = \sum\limits_{r = 1}^n {\left( {2r - 1} \right){{\left( {{A_{2r - 1}}} \right)}^{2r - 1}}} $
$ \Rightarrow B = {A_1} + 3{\left( {{A_3}} \right)^3} + 5{\left( {{A_5}} \right)^5} + ................. + \left( {2n - 1} \right){\left( {{A_{2n - 1}}} \right)^{2n - 1}}$………………. (2)
Now take transpose of matrix B we have,
$ \Rightarrow {B^T} = {A_1}^T + 3{\left( {{A_3}^T} \right)^3} + 5{\left( {{A_5}^T} \right)^5} + ................. + \left( {2n - 1} \right){\left( {{A_{2n - 1}}^T} \right)^{2n - 1}}$
Now from equation (1) we have,
$ \Rightarrow {B^T} = - {A_1} + 3{\left( { - {A_3}} \right)^3} + 5{\left( { - {A_5}} \right)^5} + ................. + \left( {2n - 1} \right){\left( { - {A_{2n - 1}}} \right)^{2n - 1}}$
Now take (-) common we have,
$ \Rightarrow {B^T} = - \left[ {{A_1} + 3{{\left( {{A_3}} \right)}^3} + 5{{\left( {{A_5}} \right)}^5} + ................. + \left( {2n - 1} \right){{\left( {{A_{2n - 1}}} \right)}^{2n - 1}}} \right]$
Now from equation (2) we have,
$ \Rightarrow {B^T} = - B$
Which is the condition of skew-symmetric.
So, the matrix B is a skew-symmetric matrix.
Hence option (b) is correct.
Note – Whenever we face such types of problems the key concept is to use the gist of the basic definition of symmetric and skew-symmetric matrix. A symmetric matrix is one which even after transposed gives us the same matrix. Use these concepts of symmetric and skew-symmetric matrix to get the right option for the question.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE