
If n boys and n girls sit along a line alternately in x ways and along a circle alternately in y ways such that x = 12y then n is equal to:
$
{\text{a}}{\text{. 6}} \\
{\text{b}}{\text{. 8}} \\
{\text{c}}{\text{. 9}} \\
{\text{d}}{\text{. 12}} \\
$
Answer
615.3k+ views
Hint: - Number of ways to sit along a circle by $n$ persons is$\left( {n - 1} \right)!$
Number of ways to sit along a line by n boys$ = n! $.
And the number of ways to sit along a line by n girls$ = n! $.
$\therefore $Starting from boy the number of ways to sit along a line by $n$ boys and $n$ girls alternately is $n! \times n! $.
Now, starting from girls, the number of ways to sit along a line by $n$ boys and $n$ girls alternately is $n! \times n! $.
Therefore total number of ways to sit along a line by $n$ boys and $n$ girls alternately
$
\left( x \right) = n! \times n! + n! \times n! \\
\Rightarrow x = 2 \times n! \times n! \\
$
Now, in circle starting does not matter because in the circle there are no starting and end points.
Therefore total no of ways to sit along a circle by $n$ boys and $n$ girls alternately
$ \Rightarrow y = \left( {n - 1} \right)! \times n! $
Now according to question it is given that $x = 12y$
$
\Rightarrow 2 \times n! \times n! = 12 \times \left( {n - 1} \right)! \times n! \\
\Rightarrow n! = 6 \times \left( {n - 1} \right)! \\
$
As we know that $n! = n\left( {n - 1} \right)!$
$
\Rightarrow n\left( {n - 1} \right)! = 6 \times \left( {n - 1} \right)! \\
\Rightarrow n = 6 \\
$
Hence, $n = 6$is the required answer.
$\therefore $Option (a) is correct.
Note: -In such types of questions first find out the total number of ways to sit along a line by $n$ boys and $n$ girls alternately and total number of ways to sit along a circle by $n$ boys and $n$ girls alternately, then equate them according to given condition then, we will get the required answer.
Number of ways to sit along a line by n boys$ = n! $.
And the number of ways to sit along a line by n girls$ = n! $.
$\therefore $Starting from boy the number of ways to sit along a line by $n$ boys and $n$ girls alternately is $n! \times n! $.
Now, starting from girls, the number of ways to sit along a line by $n$ boys and $n$ girls alternately is $n! \times n! $.
Therefore total number of ways to sit along a line by $n$ boys and $n$ girls alternately
$
\left( x \right) = n! \times n! + n! \times n! \\
\Rightarrow x = 2 \times n! \times n! \\
$
Now, in circle starting does not matter because in the circle there are no starting and end points.
Therefore total no of ways to sit along a circle by $n$ boys and $n$ girls alternately
$ \Rightarrow y = \left( {n - 1} \right)! \times n! $
Now according to question it is given that $x = 12y$
$
\Rightarrow 2 \times n! \times n! = 12 \times \left( {n - 1} \right)! \times n! \\
\Rightarrow n! = 6 \times \left( {n - 1} \right)! \\
$
As we know that $n! = n\left( {n - 1} \right)!$
$
\Rightarrow n\left( {n - 1} \right)! = 6 \times \left( {n - 1} \right)! \\
\Rightarrow n = 6 \\
$
Hence, $n = 6$is the required answer.
$\therefore $Option (a) is correct.
Note: -In such types of questions first find out the total number of ways to sit along a line by $n$ boys and $n$ girls alternately and total number of ways to sit along a circle by $n$ boys and $n$ girls alternately, then equate them according to given condition then, we will get the required answer.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

