
If m1, m2, m3, m4 are the magnitudes of the vectors ${\vec a_1} = \,2\vec i - \vec j + \vec k,\,{\vec a_2} = \,3\vec i - 4\vec j - 4\vec k,\,{\vec a_3} = - \vec i + \vec j - \vec k,\,{\vec a_4} = - \vec i + 3\vec j + \vec k$ then the correct order of m1, m2, m3, m4 is:
A) m3 < m1 < m4 < m2
B) m3 < m1 < m2 < m4
C) m3 < m4 < m1 < m2
D) m3 < m4 < m2 < m1
Answer
620.1k+ views
Hint – In order to solve this problem use the formula of finding the magnitude of a given vector. After doing this you will get the right answer.
Complete step-by-step answer:
As we know that if the vector is $\vec p = a\vec i + b\vec j + c\vec k$ the its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $.
Therefore the magnitude of the vector ${\vec a_1} = \,2\vec i - \vec j + \vec k$ is $|{\vec a_1}| = \sqrt {{2^2} + {{( - 1)}^2} + {{(1)}^2}} = \sqrt 6 = {m_1}$
And the magnitude of the vector ${\vec a_2} = \,3\vec i - 4\vec j - 4\vec k$ is $|{\vec a_2}| = \sqrt {{3^2} + {{( - 4)}^2} + {{( - 4)}^2}} = \sqrt {41} = {m_2}$
The magnitude of the vector ${\vec a_3} = - \vec i + \vec j - \vec k$ is $|{\vec a_3}| = \sqrt {{{( - 1)}^2} + {{(1)}^2} + {{( - 1)}^2}} = \sqrt 3 = {m_3}$
The magnitude of the vector ${a_4} = - \vec i + 3\vec j + \vec k$ = $|{\vec a_4}| = \sqrt {{{( - 1)}^2} + {{(3)}^2} + {{(1)}^2}} = \sqrt {11} = {m_4}$
We can clearly see that m3 < m1 < m4 < m2.
So, the correct option is A.
Note - Whenever you face such type of problems of finding magnitude of vectors you have to use the formula for finding magnitudes of vectors. For example the vector is $\vec p = a\vec i + b\vec j + c\vec k$ then its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $. Proceeding like this you will get the right answer.
Complete step-by-step answer:
As we know that if the vector is $\vec p = a\vec i + b\vec j + c\vec k$ the its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $.
Therefore the magnitude of the vector ${\vec a_1} = \,2\vec i - \vec j + \vec k$ is $|{\vec a_1}| = \sqrt {{2^2} + {{( - 1)}^2} + {{(1)}^2}} = \sqrt 6 = {m_1}$
And the magnitude of the vector ${\vec a_2} = \,3\vec i - 4\vec j - 4\vec k$ is $|{\vec a_2}| = \sqrt {{3^2} + {{( - 4)}^2} + {{( - 4)}^2}} = \sqrt {41} = {m_2}$
The magnitude of the vector ${\vec a_3} = - \vec i + \vec j - \vec k$ is $|{\vec a_3}| = \sqrt {{{( - 1)}^2} + {{(1)}^2} + {{( - 1)}^2}} = \sqrt 3 = {m_3}$
The magnitude of the vector ${a_4} = - \vec i + 3\vec j + \vec k$ = $|{\vec a_4}| = \sqrt {{{( - 1)}^2} + {{(3)}^2} + {{(1)}^2}} = \sqrt {11} = {m_4}$
We can clearly see that m3 < m1 < m4 < m2.
So, the correct option is A.
Note - Whenever you face such type of problems of finding magnitude of vectors you have to use the formula for finding magnitudes of vectors. For example the vector is $\vec p = a\vec i + b\vec j + c\vec k$ then its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $. Proceeding like this you will get the right answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

