Answer
Verified
492k+ views
Hint – In order to solve this problem use the formula of finding the magnitude of a given vector. After doing this you will get the right answer.
Complete step-by-step answer:
As we know that if the vector is $\vec p = a\vec i + b\vec j + c\vec k$ the its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $.
Therefore the magnitude of the vector ${\vec a_1} = \,2\vec i - \vec j + \vec k$ is $|{\vec a_1}| = \sqrt {{2^2} + {{( - 1)}^2} + {{(1)}^2}} = \sqrt 6 = {m_1}$
And the magnitude of the vector ${\vec a_2} = \,3\vec i - 4\vec j - 4\vec k$ is $|{\vec a_2}| = \sqrt {{3^2} + {{( - 4)}^2} + {{( - 4)}^2}} = \sqrt {41} = {m_2}$
The magnitude of the vector ${\vec a_3} = - \vec i + \vec j - \vec k$ is $|{\vec a_3}| = \sqrt {{{( - 1)}^2} + {{(1)}^2} + {{( - 1)}^2}} = \sqrt 3 = {m_3}$
The magnitude of the vector ${a_4} = - \vec i + 3\vec j + \vec k$ = $|{\vec a_4}| = \sqrt {{{( - 1)}^2} + {{(3)}^2} + {{(1)}^2}} = \sqrt {11} = {m_4}$
We can clearly see that m3 < m1 < m4 < m2.
So, the correct option is A.
Note - Whenever you face such type of problems of finding magnitude of vectors you have to use the formula for finding magnitudes of vectors. For example the vector is $\vec p = a\vec i + b\vec j + c\vec k$ then its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $. Proceeding like this you will get the right answer.
Complete step-by-step answer:
As we know that if the vector is $\vec p = a\vec i + b\vec j + c\vec k$ the its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $.
Therefore the magnitude of the vector ${\vec a_1} = \,2\vec i - \vec j + \vec k$ is $|{\vec a_1}| = \sqrt {{2^2} + {{( - 1)}^2} + {{(1)}^2}} = \sqrt 6 = {m_1}$
And the magnitude of the vector ${\vec a_2} = \,3\vec i - 4\vec j - 4\vec k$ is $|{\vec a_2}| = \sqrt {{3^2} + {{( - 4)}^2} + {{( - 4)}^2}} = \sqrt {41} = {m_2}$
The magnitude of the vector ${\vec a_3} = - \vec i + \vec j - \vec k$ is $|{\vec a_3}| = \sqrt {{{( - 1)}^2} + {{(1)}^2} + {{( - 1)}^2}} = \sqrt 3 = {m_3}$
The magnitude of the vector ${a_4} = - \vec i + 3\vec j + \vec k$ = $|{\vec a_4}| = \sqrt {{{( - 1)}^2} + {{(3)}^2} + {{(1)}^2}} = \sqrt {11} = {m_4}$
We can clearly see that m3 < m1 < m4 < m2.
So, the correct option is A.
Note - Whenever you face such type of problems of finding magnitude of vectors you have to use the formula for finding magnitudes of vectors. For example the vector is $\vec p = a\vec i + b\vec j + c\vec k$ then its magnitude will be $|\vec p| = \sqrt {{a^2} + {b^2} + {c^2}} $. Proceeding like this you will get the right answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE