
If $lmn = 1$, show that
$\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Answer
217.2k+ views
Hint- Simplify the L.H.S and reduce it to a single term and try to cancel out numerator and denominator which gives unit value.
Given: $lmn = 1$
To prove: $\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Taking first term, \[\dfrac{1}{{1 + l + {m^{ - 1}}}}\]
$
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} \\
= \dfrac{m}{{m + lm + 1}} \\
$
Taking second term, \[\dfrac{1}{{1 + m + {n^{ - 1}}}}\]
\[
= \dfrac{1}{{1 + m + \dfrac{1}{n}}} \\
= \dfrac{1}{{1 + m + lm}}{\text{ }}\left\{ {\because lmn = 1 \Rightarrow \dfrac{1}{n} = lm} \right\} \\
\]
Taking third term, \[\dfrac{1}{{1 + n + {l^{ - 1}}}}\]
Multiply and divide by $lm$, we get:
\[
= \dfrac{1}{{1 + n + {l^{ - 1}}}} \times \dfrac{{lm}}{{lm}} \\
= \dfrac{{lm}}{{lm + lmn + {l^{ - 1}}lm}} \\
= \dfrac{{lm}}{{lm + 1 + m}}{\text{ }}\left\{ {\because lmn = 1} \right\} \\
\]
Now, combining all these terms to form the L.H.S, we get:
\[
{\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} \\
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} + \dfrac{1}{{1 + m + \dfrac{1}{n}}} + \dfrac{1}{{1 + n + \dfrac{1}{l}}} \\
= \dfrac{m}{{m + lm + 1}} + \dfrac{1}{{1 + m + lm}} + \dfrac{{lm}}{{lm + 1 + m}} \\
\]
Since, these have common denominator, hence we can add them directly.
\[
= \dfrac{{m + 1 + lm}}{{m + lm + 1}} \\
= 1 \\
= {\text{R}}{\text{.H}}{\text{.S}} \\
\]
Hence Proved.
Note- Whenever you see equations like these, always try to look for patterns to reduce the fraction and try to make denominators of each term equal in order to add the terms easily.
Given: $lmn = 1$
To prove: $\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Taking first term, \[\dfrac{1}{{1 + l + {m^{ - 1}}}}\]
$
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} \\
= \dfrac{m}{{m + lm + 1}} \\
$
Taking second term, \[\dfrac{1}{{1 + m + {n^{ - 1}}}}\]
\[
= \dfrac{1}{{1 + m + \dfrac{1}{n}}} \\
= \dfrac{1}{{1 + m + lm}}{\text{ }}\left\{ {\because lmn = 1 \Rightarrow \dfrac{1}{n} = lm} \right\} \\
\]
Taking third term, \[\dfrac{1}{{1 + n + {l^{ - 1}}}}\]
Multiply and divide by $lm$, we get:
\[
= \dfrac{1}{{1 + n + {l^{ - 1}}}} \times \dfrac{{lm}}{{lm}} \\
= \dfrac{{lm}}{{lm + lmn + {l^{ - 1}}lm}} \\
= \dfrac{{lm}}{{lm + 1 + m}}{\text{ }}\left\{ {\because lmn = 1} \right\} \\
\]
Now, combining all these terms to form the L.H.S, we get:
\[
{\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} \\
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} + \dfrac{1}{{1 + m + \dfrac{1}{n}}} + \dfrac{1}{{1 + n + \dfrac{1}{l}}} \\
= \dfrac{m}{{m + lm + 1}} + \dfrac{1}{{1 + m + lm}} + \dfrac{{lm}}{{lm + 1 + m}} \\
\]
Since, these have common denominator, hence we can add them directly.
\[
= \dfrac{{m + 1 + lm}}{{m + lm + 1}} \\
= 1 \\
= {\text{R}}{\text{.H}}{\text{.S}} \\
\]
Hence Proved.
Note- Whenever you see equations like these, always try to look for patterns to reduce the fraction and try to make denominators of each term equal in order to add the terms easily.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

