
If \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\] then find the \[Z\] lies on
A. Circle
B. The imaginary axis
C. A real axis
D. An ellipse
Answer
233.1k+ views
Hint: In this question, we need to find the location of \[Z\] where, \[Z\] is a complex number. For this, we need to assume that \[Z = a + ib\]. We can decide the location of \[Z\] based on the value that will come after substituting the value of \[Z\] in the given equation. For this, we will use the concept of modulus of a complex number.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

NCERT Solutions For Class 11 Maths Chapter 13 Statistics (2025-26)

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Understanding Collisions: Types and Examples for Students

