
If $\left| x \right|<\dfrac{1}{2}$, what is the value of $1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $?
A. ${{\left[ \dfrac{1-x}{1-2x} \right]}^{n}}$
B. ${{(1-x)}^{n}}$
C. ${{\left[ \dfrac{1-2x}{1-x} \right]}^{n}}$
D. ${{\left( \dfrac{1}{1-x} \right)}^{n}}$
Answer
233.1k+ views
Hint: Here we need to find the sum of the given infinite series. By observing the series, we come to know that, the series is a binomial expansion for a rational index. So, by using the binomial theorem for the rational index, we can find the required sum. By comparing the general binomial expansion with the given expansion, we get the required values for solving it.
Formula Used: Binomial theorem for rational index:
If $n$ is a rational number, then the sum of the infinite series exists only when $\left| x \right|<1$.
If $n$ is a rational number and $\left| x \right|<1$ then the binomial theorem says
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+....\infty ={{(1+x)}^{n}}$
Some of the basic expansions are:
$1-nx+\dfrac{n(n+1)}{2!}{{x}^{2}}-\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1+x)}^{-n}}$
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
(Note: Here observe the signs)
Complete step by step solution: The given series is
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ and $\left| x \right|<\dfrac{1}{2}$
On comparing the given series with the general binomial expansion, we get the similar one as
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
Here the only difference is $x=\dfrac{x}{1-x}$
So, we can substitute $x=\dfrac{x}{1-x}$ in the general term.
Thus, we get
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty ={{(1-\dfrac{x}{1-x})}^{-n}}$
On simplifying,
$\begin{align}
& {{(1-\dfrac{x}{1-x})}^{-n}}={{\left( \dfrac{1-x-x}{1-x} \right)}^{-n}} \\
& \text{ }={{\left( \dfrac{1-2x}{1-x} \right)}^{-n}} \\
\end{align}$
On applying ${{\left( \dfrac{a}{b} \right)}^{-n}}={{\left( \dfrac{b}{a} \right)}^{n}}$, we get
${{\left( 1-\dfrac{x}{1-x} \right)}^{-n}}={{\left( \dfrac{1-x}{1-2x} \right)}^{n}}$
Therefore, the value of given series $1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ is ${{\left[ \dfrac{1-x}{1-2x} \right]}^{n}}$.
Option ‘A’ is correct
Note: Here, we need to remember that, while comparing the given series with the general expansions, the signs between the terms and signs of their powers in the series should be observed carefully in order to get the correct value.
Formula Used: Binomial theorem for rational index:
If $n$ is a rational number, then the sum of the infinite series exists only when $\left| x \right|<1$.
If $n$ is a rational number and $\left| x \right|<1$ then the binomial theorem says
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+....\infty ={{(1+x)}^{n}}$
Some of the basic expansions are:
$1-nx+\dfrac{n(n+1)}{2!}{{x}^{2}}-\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1+x)}^{-n}}$
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
(Note: Here observe the signs)
Complete step by step solution: The given series is
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ and $\left| x \right|<\dfrac{1}{2}$
On comparing the given series with the general binomial expansion, we get the similar one as
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
Here the only difference is $x=\dfrac{x}{1-x}$
So, we can substitute $x=\dfrac{x}{1-x}$ in the general term.
Thus, we get
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty ={{(1-\dfrac{x}{1-x})}^{-n}}$
On simplifying,
$\begin{align}
& {{(1-\dfrac{x}{1-x})}^{-n}}={{\left( \dfrac{1-x-x}{1-x} \right)}^{-n}} \\
& \text{ }={{\left( \dfrac{1-2x}{1-x} \right)}^{-n}} \\
\end{align}$
On applying ${{\left( \dfrac{a}{b} \right)}^{-n}}={{\left( \dfrac{b}{a} \right)}^{n}}$, we get
${{\left( 1-\dfrac{x}{1-x} \right)}^{-n}}={{\left( \dfrac{1-x}{1-2x} \right)}^{n}}$
Therefore, the value of given series $1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ is ${{\left[ \dfrac{1-x}{1-2x} \right]}^{n}}$.
Option ‘A’ is correct
Note: Here, we need to remember that, while comparing the given series with the general expansions, the signs between the terms and signs of their powers in the series should be observed carefully in order to get the correct value.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

