
If is \[n\] an integer, prove that \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]
Answer
592.2k+ views
Hint: n is an integer which refers to the numbers which include whole numbers, positive numbers and negative numbers. An integer number cannot have a fraction or decimal. Integer numbers can be \[n = .........., - 2, - 1,0,1,2,3.........\]
In this question check the value of the given function weather it is equal to 1 by substituting the n with integer numbers.
Complete step by step solution:
Given \[n\] is an integer number, so check for the value of the trigonometric function weather it is equal to 1 when integer values are substituted
Case 1: When \[n = 0\]by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{0 \times \pi }}{2} + {{\left( { - 1} \right)}^0}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {0 + \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{\pi }{4}} \right) = 1 \\
\]
Hence we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]if \[n = 0\]since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Case 2: When\[n = 1\]by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{1 \times \pi }}{2} + {{\left( { - 1} \right)}^1}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{\pi }{4}} \right) = 1 \\
\]
Hence we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\] if \[n = 1\] since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Case 3: When \[n = 2\] by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{2 \times \pi }}{2} + {{\left( { - 1} \right)}^2}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\pi + \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{\pi }{4}} \right) = 1 \\
\]
Hence, we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]if \[n = 2\] since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Case 4: When\[n = 3\] by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{3 \times \pi }}{2} + {{\left( { - 1} \right)}^3}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{{5\pi }}{4}} \right) = 1 \\
\]
Hence, we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]if \[n = 3\] since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
So the trigonometric function \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\] when the values of integers are \[n = 0,1,2,3.........\infty \]
Note: Trigonometric functions have different values when they lie in the four quadrants.
The trigonometric values of a tan function are positive when they lie in the first and third quadrants, which are ranging from \[{0^ \circ } - {90^ \circ }\]&\[{180^ \circ } - {270^ \circ }\].
In this question check the value of the given function weather it is equal to 1 by substituting the n with integer numbers.
Complete step by step solution:
Given \[n\] is an integer number, so check for the value of the trigonometric function weather it is equal to 1 when integer values are substituted
Case 1: When \[n = 0\]by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{0 \times \pi }}{2} + {{\left( { - 1} \right)}^0}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {0 + \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{\pi }{4}} \right) = 1 \\
\]
Hence we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]if \[n = 0\]since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Case 2: When\[n = 1\]by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{1 \times \pi }}{2} + {{\left( { - 1} \right)}^1}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{\pi }{4}} \right) = 1 \\
\]
Hence we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\] if \[n = 1\] since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Case 3: When \[n = 2\] by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{2 \times \pi }}{2} + {{\left( { - 1} \right)}^2}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\pi + \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{\pi }{4}} \right) = 1 \\
\]
Hence, we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]if \[n = 2\] since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Case 4: When\[n = 3\] by putting this integer value we get
\[
\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{3 \times \pi }}{2} + {{\left( { - 1} \right)}^3}\dfrac{\pi }{4}} \right\} \\
\tan \left\{ {\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}} \right\} \\
\tan \left( {\dfrac{{5\pi }}{4}} \right) = 1 \\
\]
Hence, we can say \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\]if \[n = 3\] since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
So the trigonometric function \[\tan \left\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\} = 1\] when the values of integers are \[n = 0,1,2,3.........\infty \]
Note: Trigonometric functions have different values when they lie in the four quadrants.
The trigonometric values of a tan function are positive when they lie in the first and third quadrants, which are ranging from \[{0^ \circ } - {90^ \circ }\]&\[{180^ \circ } - {270^ \circ }\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

