Answer
Verified
417.3k+ views
Hint: Now consider the given integral .To solve the integral we will use a method of substitution. Hence we will first substitute $1+{{x}^{\dfrac{5}{2}}}={{t}^{2}}$ now differentiate the equation to find relation between dt and dx. Now we will write the whole integral with respect to t. Now we know that $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C$ Hence we will use this formula to expand the obtained integral. Now we will simplify the equation and compare the equation with the given equation. Hence we get the required values of P, Q and R.
Complete step by step answer:
Now consider the given integral $\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}$ . We know that ${{a}^{m+n}}={{a}^{n}}{{a}^{m}}$ using this we get,
$\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\int{{{x}^{\dfrac{5}{2}}}{{x}^{\dfrac{3}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}....................\left( 1 \right)$
To solve this integral we will use a method of substitution.
Now let $1+{{x}^{\dfrac{5}{2}}}={{t}^{2}}$
Differentiating the above equation we get,
$\begin{align}
& \dfrac{5}{2}{{x}^{\dfrac{3}{2}}}dx=2tdt \\
& \Rightarrow {{x}^{\dfrac{3}{2}}}dx=\dfrac{4}{5}tdt \\
\end{align}$
Now since $1+{{x}^{\dfrac{5}{2}}}={{t}^{2}}$ we have,
$\Rightarrow {{x}^{\dfrac{5}{2}}}={{t}^{2}}-1$
Squaring the above equation on both sides we get,
$\Rightarrow {{x}^{5}}={{\left( {{t}^{2}}-1 \right)}^{2}}$
Now substituting these values in equation (1) we will write the integral in terms of t,
$\Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\int{\dfrac{4}{5}{{\left( {{t}^{2}}-1 \right)}^{2}}{{t}^{2}}dt}$
Now simplifying the equation using the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ we get,
$\begin{align}
& \Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\dfrac{4}{5}\int{\left( {{t}^{4}}-2{{t}^{2}}+1 \right){{t}^{2}}dt} \\
& \Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\dfrac{4}{5}\int{\left( {{t}^{6}}-2{{t}^{4}}+{{t}^{2}} \right)dt} \\
\end{align}$
Now we know that $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C$ hence using this we get,
\[\begin{align}
& \Rightarrow \dfrac{4}{5}\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\dfrac{4}{5}\left( \dfrac{{{t}^{7}}}{7}-2\dfrac{{{t}^{5}}}{5}+\dfrac{{{t}^{3}}}{3} \right)+C \\
& \Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\left( \dfrac{4{{t}^{7}}}{35}-\dfrac{8{{t}^{5}}}{25}+\dfrac{4{{t}^{3}}}{15} \right)+C \\
\end{align}\]
Now substituting the value of t we get,
Now let us find P, Q and R by comparing the above equation with the equation$\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=P{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{7}{2}}}+Q{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{7}{2}}}+R{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{7}{2}}}+C$
Hence we get, $P=\dfrac{4}{35},Q=\dfrac{-8}{25}R=\dfrac{4}{15}$
Hence option a is the correct option.
Note: Now we always have to be careful when using substitution to solve integration. Also while replacing the variable also remember to replace the differential dx by differentiating the equation and find its relation to the variable dt. Note that whenever we have such indices in multiplication we can use the method of substitution in the above manner. Also in case of definite integral remember to change the limits as well.
Complete step by step answer:
Now consider the given integral $\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}$ . We know that ${{a}^{m+n}}={{a}^{n}}{{a}^{m}}$ using this we get,
$\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\int{{{x}^{\dfrac{5}{2}}}{{x}^{\dfrac{3}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}....................\left( 1 \right)$
To solve this integral we will use a method of substitution.
Now let $1+{{x}^{\dfrac{5}{2}}}={{t}^{2}}$
Differentiating the above equation we get,
$\begin{align}
& \dfrac{5}{2}{{x}^{\dfrac{3}{2}}}dx=2tdt \\
& \Rightarrow {{x}^{\dfrac{3}{2}}}dx=\dfrac{4}{5}tdt \\
\end{align}$
Now since $1+{{x}^{\dfrac{5}{2}}}={{t}^{2}}$ we have,
$\Rightarrow {{x}^{\dfrac{5}{2}}}={{t}^{2}}-1$
Squaring the above equation on both sides we get,
$\Rightarrow {{x}^{5}}={{\left( {{t}^{2}}-1 \right)}^{2}}$
Now substituting these values in equation (1) we will write the integral in terms of t,
$\Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\int{\dfrac{4}{5}{{\left( {{t}^{2}}-1 \right)}^{2}}{{t}^{2}}dt}$
Now simplifying the equation using the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ we get,
$\begin{align}
& \Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\dfrac{4}{5}\int{\left( {{t}^{4}}-2{{t}^{2}}+1 \right){{t}^{2}}dt} \\
& \Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\dfrac{4}{5}\int{\left( {{t}^{6}}-2{{t}^{4}}+{{t}^{2}} \right)dt} \\
\end{align}$
Now we know that $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C$ hence using this we get,
\[\begin{align}
& \Rightarrow \dfrac{4}{5}\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\dfrac{4}{5}\left( \dfrac{{{t}^{7}}}{7}-2\dfrac{{{t}^{5}}}{5}+\dfrac{{{t}^{3}}}{3} \right)+C \\
& \Rightarrow \int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=\left( \dfrac{4{{t}^{7}}}{35}-\dfrac{8{{t}^{5}}}{25}+\dfrac{4{{t}^{3}}}{15} \right)+C \\
\end{align}\]
Now substituting the value of t we get,
Now let us find P, Q and R by comparing the above equation with the equation$\int{{{x}^{\dfrac{13}{2}}}{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{1}{2}}}dx}=P{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{7}{2}}}+Q{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{7}{2}}}+R{{\left( 1+{{x}^{\dfrac{5}{2}}} \right)}^{\dfrac{7}{2}}}+C$
Hence we get, $P=\dfrac{4}{35},Q=\dfrac{-8}{25}R=\dfrac{4}{15}$
Hence option a is the correct option.
Note: Now we always have to be careful when using substitution to solve integration. Also while replacing the variable also remember to replace the differential dx by differentiating the equation and find its relation to the variable dt. Note that whenever we have such indices in multiplication we can use the method of substitution in the above manner. Also in case of definite integral remember to change the limits as well.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell