If $\int\limits_{a}^{b}{{{x}^{3}}dx}=0$ and $\int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{2}{3}$,
then what are the values of a and b respectively?
(a) \[-1,1\]
(b) $1,1$
(c) $0,0$
(d) $2,-2$
Last updated date: 19th Mar 2023
•
Total views: 306.9k
•
Views today: 6.85k
Answer
306.9k+ views
Hint: We are given two basic integrals which, after solving, will give us two equations having
variables $'a'$ and $'b'$. Solving these two equations by substitution method, we can find out the
value of $'a'$ and $'b'$.
Before proceeding with the question, we will first discuss the formula which is required to
solve this question.
We have a formula in integration which can be used to integrate polynomial,
$\begin{align}
& \int\limits_{a}^{b}{{{x}^{n}}dx}=\left[ \dfrac{{{x}^{n+1}}}{n+1} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n+1}\left( {{b}^{n+1}}-{{a}^{n+1}}
\right)...........\left( 1 \right) \\
\end{align}$
In the question, it is given $\int\limits_{a}^{b}{{{x}^{3}}dx}=0...........\left( 2 \right)$.
Substituting $n=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& \int\limits_{a}^{b}{{{x}^{3}}dx}=\left[ \dfrac{{{x}^{3+1}}}{3+1} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{3}}dx}=\left[ \dfrac{{{x}^{4}}}{4} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{3}}dx}=\dfrac{1}{4}\left( {{b}^{4}}-{{a}^{4}} \right)..........\left(
3 \right) \\
\end{align}$
Substituting $\int\limits_{a}^{b}{{{x}^{3}}dx}$ from equation $\left( 3 \right)$ in equation $\left( 2
\right)$, we get,
$\begin{align}
& \dfrac{1}{4}\left( {{b}^{4}}-{{a}^{4}} \right)=0 \\
& \Rightarrow {{b}^{4}}-{{a}^{4}}=0 \\
& \Rightarrow {{a}^{4}}={{b}^{4}} \\
\end{align}$
$\Rightarrow a=+b$ or $a=-b.........\left( 4 \right)$
Also, it is given in the question $\int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{2}{3}...........\left( 5 \right)$
Substituting $n=2$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& \int\limits_{a}^{b}{{{x}^{2}}dx}=\left[ \dfrac{{{x}^{2+1}}}{2+1} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{2}}dx}=\left[ \dfrac{{{x}^{3}}}{3} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{1}{3}\left( {{b}^{3}}-{{a}^{3}} \right)..........\left(
6 \right) \\
\end{align}$
Substituting $\int\limits_{a}^{b}{{{x}^{2}}dx}$ from equation $\left( 6 \right)$ in equation $\left( 5
\right)$, we get,
$\dfrac{1}{3}\left( {{b}^{3}}-{{a}^{3}} \right)=\dfrac{2}{3}$
Cancelling $3$ on both the sides of the equality in the above equation, we get,
${{b}^{3}}-{{a}^{3}}=2..........\left( 7 \right)$
Substituting $a$ from equation $\left( 4 \right)$ in equation $\left( 7 \right)$, we get,
${{b}^{3}}-{{\left( +b \right)}^{3}}=2$ or ${{b}^{3}}-{{\left( -b \right)}^{3}}=2$
$\Rightarrow {{b}^{3}}-{{b}^{3}}=2$ or ${{b}^{3}}+{{b}^{3}}=2$
$0=2........\left( 8 \right)$ or $2{{b}^{3}}=2.........\left( 9 \right)$
We can conclude that equation $\left( 8 \right)$ is invalid because $0$ can never be equal to
$2$.Therefore, we will find our solution from equation $\left( 9 \right)$ only.
$\begin{align}
& 2{{b}^{3}}=2 \\
& \Rightarrow {{b}^{3}}=1 \\
& \Rightarrow b=1..........\left( 10 \right) \\
\end{align}$
We can find $a$ by substituting the equation $\left( 10 \right)$ in equation $\left( 4 \right)$. Since we
had ignored equation $\left( 8 \right)$, we will not substitute equation $\left( 10 \right)$ in $a=+b$.
We will substitute the equation $\left( 10 \right)$ only in $a=-b$.
Substituting $b=1$ from equation $\left( 10 \right)$ in $a=-b$, we get,
$a=-1..........\left( 11 \right)$
Hence, from equation $\left( 10 \right)$ and equation $\left( 11 \right)$, we obtain $a=-1,b=1$.
Therefore the correct answer is option (a).
Note: Sometimes in such types of questions, we may apply the incorrect formula of the integration that we discussed in equation $\left( 1 \right)$. We sometimes apply it as
$\int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n-1}\left( {{b}^{n-1}}-{{a}^{n-1}} \right)$ instead of
$\int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n+1}\left( {{b}^{n+1}}-{{a}^{n+1}} \right)$ because we convert $n$ to $n-1$ in differentiation.
variables $'a'$ and $'b'$. Solving these two equations by substitution method, we can find out the
value of $'a'$ and $'b'$.
Before proceeding with the question, we will first discuss the formula which is required to
solve this question.
We have a formula in integration which can be used to integrate polynomial,
$\begin{align}
& \int\limits_{a}^{b}{{{x}^{n}}dx}=\left[ \dfrac{{{x}^{n+1}}}{n+1} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n+1}\left( {{b}^{n+1}}-{{a}^{n+1}}
\right)...........\left( 1 \right) \\
\end{align}$
In the question, it is given $\int\limits_{a}^{b}{{{x}^{3}}dx}=0...........\left( 2 \right)$.
Substituting $n=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& \int\limits_{a}^{b}{{{x}^{3}}dx}=\left[ \dfrac{{{x}^{3+1}}}{3+1} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{3}}dx}=\left[ \dfrac{{{x}^{4}}}{4} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{3}}dx}=\dfrac{1}{4}\left( {{b}^{4}}-{{a}^{4}} \right)..........\left(
3 \right) \\
\end{align}$
Substituting $\int\limits_{a}^{b}{{{x}^{3}}dx}$ from equation $\left( 3 \right)$ in equation $\left( 2
\right)$, we get,
$\begin{align}
& \dfrac{1}{4}\left( {{b}^{4}}-{{a}^{4}} \right)=0 \\
& \Rightarrow {{b}^{4}}-{{a}^{4}}=0 \\
& \Rightarrow {{a}^{4}}={{b}^{4}} \\
\end{align}$
$\Rightarrow a=+b$ or $a=-b.........\left( 4 \right)$
Also, it is given in the question $\int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{2}{3}...........\left( 5 \right)$
Substituting $n=2$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& \int\limits_{a}^{b}{{{x}^{2}}dx}=\left[ \dfrac{{{x}^{2+1}}}{2+1} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{2}}dx}=\left[ \dfrac{{{x}^{3}}}{3} \right]_{a}^{b} \\
& \Rightarrow \int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{1}{3}\left( {{b}^{3}}-{{a}^{3}} \right)..........\left(
6 \right) \\
\end{align}$
Substituting $\int\limits_{a}^{b}{{{x}^{2}}dx}$ from equation $\left( 6 \right)$ in equation $\left( 5
\right)$, we get,
$\dfrac{1}{3}\left( {{b}^{3}}-{{a}^{3}} \right)=\dfrac{2}{3}$
Cancelling $3$ on both the sides of the equality in the above equation, we get,
${{b}^{3}}-{{a}^{3}}=2..........\left( 7 \right)$
Substituting $a$ from equation $\left( 4 \right)$ in equation $\left( 7 \right)$, we get,
${{b}^{3}}-{{\left( +b \right)}^{3}}=2$ or ${{b}^{3}}-{{\left( -b \right)}^{3}}=2$
$\Rightarrow {{b}^{3}}-{{b}^{3}}=2$ or ${{b}^{3}}+{{b}^{3}}=2$
$0=2........\left( 8 \right)$ or $2{{b}^{3}}=2.........\left( 9 \right)$
We can conclude that equation $\left( 8 \right)$ is invalid because $0$ can never be equal to
$2$.Therefore, we will find our solution from equation $\left( 9 \right)$ only.
$\begin{align}
& 2{{b}^{3}}=2 \\
& \Rightarrow {{b}^{3}}=1 \\
& \Rightarrow b=1..........\left( 10 \right) \\
\end{align}$
We can find $a$ by substituting the equation $\left( 10 \right)$ in equation $\left( 4 \right)$. Since we
had ignored equation $\left( 8 \right)$, we will not substitute equation $\left( 10 \right)$ in $a=+b$.
We will substitute the equation $\left( 10 \right)$ only in $a=-b$.
Substituting $b=1$ from equation $\left( 10 \right)$ in $a=-b$, we get,
$a=-1..........\left( 11 \right)$
Hence, from equation $\left( 10 \right)$ and equation $\left( 11 \right)$, we obtain $a=-1,b=1$.
Therefore the correct answer is option (a).
Note: Sometimes in such types of questions, we may apply the incorrect formula of the integration that we discussed in equation $\left( 1 \right)$. We sometimes apply it as
$\int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n-1}\left( {{b}^{n-1}}-{{a}^{n-1}} \right)$ instead of
$\int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n+1}\left( {{b}^{n+1}}-{{a}^{n+1}} \right)$ because we convert $n$ to $n-1$ in differentiation.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
