Answer
Verified
369.9k+ views
Hint: Derivative of $\log \left( \cos ecx \right)$ is equal to $\left( -\cot x \right)$
$\dfrac{d}{dx}\left( \log \cos ecx \right)=\dfrac{1}{\cos ecx}\times -\cos ecx\cot x=-\cot x=\dfrac{-1}{\tan x}$
We can apply the method of substitution of integration as we observed that both the function and its derivative are present in the above given question.
Also, the general form of integration by substitution method is given as follows;
$\int{f\left( g\left( x \right) \right).{g}'\left( x \right).dx=f\left( t \right).dt}$ where $t = g(x)$.
Complete step by step solution:
We are given that, $I=\int{\dfrac{dx}{\tan x\log \cos ecx}}$ $\ldots \ldots \ldots \left( 1 \right)$
Let us take, $\ldots \ldots \ldots \left( 2 \right)$
Now, we will take derivative on both sides with respect to x
$\dfrac{d}{dx}\left( \log \cos ecx \right)=\dfrac{dt}{dx}$
Now we will apply chain rule, which states: $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]={f}'\left( g\left( x \right) \right)*{g}'\left( x \right)$
And we get; $\dfrac{1}{\cos ecx}\times -\cos ecx\cot x=\dfrac{dt}{dx}$
Formulas used in the above step are
$\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$
$\dfrac{d}{dx}\left( \cos ecx \right)=-\cos ecx\cot x$
Hence, $\ldots \ldots \ldots \left( 3 \right)$
Using the substitution method of integration, substituting (2) in equation (1),
Using the substitution method of integration, substituting (3) in equation (1),
We get,
$ I=\int{\dfrac{dx}{t}}\times \dfrac{-dt}{dx}$
$ I=\int{\dfrac{-dt}{t}} $
Now, using formula $\int{\dfrac{dx}{x}}=\log \left| \left. x \right| \right.$
We get $I=-\log \left| \left. t \right| \right. +c$
Substituting the value of t from equation (2) in the above step, we get
$I=-\log \left| \left. \log \cos ecx \right| \right.+c$
This gives us our required answer.
Hence, from the given options, the correct option is (C).
Note:
Questions of such a pattern where there forms a relation between the two functions, we always use the method of substitution of integration. The substitution method is used when an integral contains some function and its derivative. In this case we can set t equal to the function and rewrite the integral in terms of the new variable t. This makes integral easy to solve.
The general form of integration by substitution method is given as follows;
$\int{f\left( g\left( x \right) \right).{g}'\left( x \right).dx=f\left( t \right).dt}$ where t = g(x).
$\dfrac{d}{dx}\left( \log \cos ecx \right)=\dfrac{1}{\cos ecx}\times -\cos ecx\cot x=-\cot x=\dfrac{-1}{\tan x}$
We can apply the method of substitution of integration as we observed that both the function and its derivative are present in the above given question.
Also, the general form of integration by substitution method is given as follows;
$\int{f\left( g\left( x \right) \right).{g}'\left( x \right).dx=f\left( t \right).dt}$ where $t = g(x)$.
Complete step by step solution:
We are given that, $I=\int{\dfrac{dx}{\tan x\log \cos ecx}}$ $\ldots \ldots \ldots \left( 1 \right)$
Let us take, $\ldots \ldots \ldots \left( 2 \right)$
Now, we will take derivative on both sides with respect to x
$\dfrac{d}{dx}\left( \log \cos ecx \right)=\dfrac{dt}{dx}$
Now we will apply chain rule, which states: $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]={f}'\left( g\left( x \right) \right)*{g}'\left( x \right)$
And we get; $\dfrac{1}{\cos ecx}\times -\cos ecx\cot x=\dfrac{dt}{dx}$
Formulas used in the above step are
$\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$
$\dfrac{d}{dx}\left( \cos ecx \right)=-\cos ecx\cot x$
Hence, $\ldots \ldots \ldots \left( 3 \right)$
Using the substitution method of integration, substituting (2) in equation (1),
Using the substitution method of integration, substituting (3) in equation (1),
We get,
$ I=\int{\dfrac{dx}{t}}\times \dfrac{-dt}{dx}$
$ I=\int{\dfrac{-dt}{t}} $
Now, using formula $\int{\dfrac{dx}{x}}=\log \left| \left. x \right| \right.$
We get $I=-\log \left| \left. t \right| \right. +c$
Substituting the value of t from equation (2) in the above step, we get
$I=-\log \left| \left. \log \cos ecx \right| \right.+c$
This gives us our required answer.
Hence, from the given options, the correct option is (C).
Note:
Questions of such a pattern where there forms a relation between the two functions, we always use the method of substitution of integration. The substitution method is used when an integral contains some function and its derivative. In this case we can set t equal to the function and rewrite the integral in terms of the new variable t. This makes integral easy to solve.
The general form of integration by substitution method is given as follows;
$\int{f\left( g\left( x \right) \right).{g}'\left( x \right).dx=f\left( t \right).dt}$ where t = g(x).
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE