# If $\hat a$ and $\hat b$ are unit vectors inclined at an angle $\theta $, then prove that

$\tan \dfrac{\theta }{2} = \left| {\dfrac{{\hat a - \hat b}}{{\hat a + \hat b}}} \right|$

Last updated date: 24th Mar 2023

•

Total views: 307.5k

•

Views today: 6.85k

Answer

Verified

307.5k+ views

Hint: To prove this type of identity you have to start from $\left| {\vec A \pm \vec B} \right| = \sqrt {{{\left| {\vec A} \right|}^2} + {{\left| {\vec B} \right|}^2} \pm 2\vec A\vec B\cos \theta } $ here and it is given a and b are unit vectors so put A=B=1 and proceed further using trigonometric results.

Complete step-by-step answer:

Using the formula

$\left| {\vec A \pm \vec B} \right| = \sqrt {{{\left| {\vec A} \right|}^2} + {{\left| {\vec B} \right|}^2} \pm 2\vec A\vec B\cos \theta } $

Put A=B=1 because of unit vectors.

$\left| {\hat a + \hat b} \right| = \sqrt {1 + 1 + 2\cos \theta } = \sqrt {2\left( {1 + \cos \theta } \right)} = \sqrt {4{{\cos }^2}\dfrac{\theta }{2}} $ $\left( {\because \left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)} \right)$

$\left| {\hat a - \hat b} \right| = \sqrt {1 + 1 - 2\cos \theta } = \sqrt {2\left( {1 - \cos \theta } \right)} = \sqrt {4{{\sin }^2}\dfrac{\theta }{2}} $$\left( {\because \left( {1 + \sin \theta = 2{{\sin }^2}\dfrac{\theta }{2}} \right)} \right)$

So we have to find

$\dfrac{{\left| {\hat a - \hat b} \right|}}{{\left| {\hat a + \hat b} \right|}} = \dfrac{{\sqrt {4{{\sin }^2}\dfrac{\theta }{2}} }}{{\sqrt {4{{\cos }^2}\dfrac{\theta }{2}} }} = \tan \dfrac{\theta }{2}$

Hence proved.

Note: Whenever you get these types of questions the key concept of solving is you have to proceed from that result which is given in hint and use what is given in question and then use trigonometric results like $\left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)$ to proceed further and use basic math to get an answer.

Complete step-by-step answer:

Using the formula

$\left| {\vec A \pm \vec B} \right| = \sqrt {{{\left| {\vec A} \right|}^2} + {{\left| {\vec B} \right|}^2} \pm 2\vec A\vec B\cos \theta } $

Put A=B=1 because of unit vectors.

$\left| {\hat a + \hat b} \right| = \sqrt {1 + 1 + 2\cos \theta } = \sqrt {2\left( {1 + \cos \theta } \right)} = \sqrt {4{{\cos }^2}\dfrac{\theta }{2}} $ $\left( {\because \left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)} \right)$

$\left| {\hat a - \hat b} \right| = \sqrt {1 + 1 - 2\cos \theta } = \sqrt {2\left( {1 - \cos \theta } \right)} = \sqrt {4{{\sin }^2}\dfrac{\theta }{2}} $$\left( {\because \left( {1 + \sin \theta = 2{{\sin }^2}\dfrac{\theta }{2}} \right)} \right)$

So we have to find

$\dfrac{{\left| {\hat a - \hat b} \right|}}{{\left| {\hat a + \hat b} \right|}} = \dfrac{{\sqrt {4{{\sin }^2}\dfrac{\theta }{2}} }}{{\sqrt {4{{\cos }^2}\dfrac{\theta }{2}} }} = \tan \dfrac{\theta }{2}$

Hence proved.

Note: Whenever you get these types of questions the key concept of solving is you have to proceed from that result which is given in hint and use what is given in question and then use trigonometric results like $\left( {1 + \cos \theta = 2{{\cos }^2}\dfrac{\theta }{2}} \right)$ to proceed further and use basic math to get an answer.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?