Answer
Verified
418.8k+ views
Hint: Here first we will take value $h(0)$ and here take $x$ value as zero then we will substitute the $x$ value as zero in $h(x)$ . Here we will get the answer for $h(x)$ . Then we will substitute the answer of $h(x)$ in $g(x)$. Finally, we will get the answer for this question.
Complete step-by-step solution:
In Question given that
$
g(x) = {e^{2x}} + {e^x} - 1 \\
h(x) = 3{x^2} - 1
$
Now we will take $x$ as zero in given question
$g(h(0)) = g(3{x^2} - 1)$
So here $x = 0$
$
= g(3(0) - 1) \\
= g(0 - 1) \\
= g( - 1)
$
Using above answer again we take $x$ as $ - 1$
Substitute the value $x$ as $ - 1$ in $g(x)$ equation
$g(x) = {e^{2x}} + {e^x} - 1$
$ = {e^{2( - 1)}} + {e^{ - 1}} - 1$
If we remove minus value, we will take reciprocal for these values
$ = \dfrac{1}{{{e^2}}} + \dfrac{1}{e} - 1$
After taking lcm for above equation we will get
$ = \dfrac{{1 + e - 1}}{{{e^2}}}$
Here we will remove $ + 1$ and the $ - 1$ we will get the answer
$ = \dfrac{e}{{{e^2}}}$
Here numerator $e$ and denominator $e$ will be cancelled we will get the answer
$ = \dfrac{1}{e}$
So finally, we will get the answer for this question as $ \dfrac{1}{e}$
Note: The reciprocal of a number is $1$ divided by the number. The reciprocal of a number is also called its multiplicative inverse. The product of a number and its reciprocal is $1$ . The reciprocal of a fraction is found by flipping its numerator and denominator. This reciprocal is mainly used for changing the minus value.
Here we will be using the concept relation and function. A function is a relation which describes that there should be only one output for each input we can say that a special kind of relation (a set of ordered pairs), which follows a rule. Every $x$ value should be associated with only one $y$ value is called a function.
Complete step-by-step solution:
In Question given that
$
g(x) = {e^{2x}} + {e^x} - 1 \\
h(x) = 3{x^2} - 1
$
Now we will take $x$ as zero in given question
$g(h(0)) = g(3{x^2} - 1)$
So here $x = 0$
$
= g(3(0) - 1) \\
= g(0 - 1) \\
= g( - 1)
$
Using above answer again we take $x$ as $ - 1$
Substitute the value $x$ as $ - 1$ in $g(x)$ equation
$g(x) = {e^{2x}} + {e^x} - 1$
$ = {e^{2( - 1)}} + {e^{ - 1}} - 1$
If we remove minus value, we will take reciprocal for these values
$ = \dfrac{1}{{{e^2}}} + \dfrac{1}{e} - 1$
After taking lcm for above equation we will get
$ = \dfrac{{1 + e - 1}}{{{e^2}}}$
Here we will remove $ + 1$ and the $ - 1$ we will get the answer
$ = \dfrac{e}{{{e^2}}}$
Here numerator $e$ and denominator $e$ will be cancelled we will get the answer
$ = \dfrac{1}{e}$
So finally, we will get the answer for this question as $ \dfrac{1}{e}$
Note: The reciprocal of a number is $1$ divided by the number. The reciprocal of a number is also called its multiplicative inverse. The product of a number and its reciprocal is $1$ . The reciprocal of a fraction is found by flipping its numerator and denominator. This reciprocal is mainly used for changing the minus value.
Here we will be using the concept relation and function. A function is a relation which describes that there should be only one output for each input we can say that a special kind of relation (a set of ordered pairs), which follows a rule. Every $x$ value should be associated with only one $y$ value is called a function.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE