
If \[g\] is the inverse of the function \[f\] and \[f'\left( x \right) = \sin x\], then \[g'\left( x \right) = \]
A. \[\operatorname{cosec} \left\{ {g\left( x \right)} \right\}\]
B. \[\sin \left\{ {g\left( x \right)} \right\}\]
C. \[ - \dfrac{1}{{\sin \left\{ {g\left( x \right)} \right\}}}\]
D. None of these
Answer
592.8k+ views
Hint: In this question, we will proceed by finding a relation between \[g\] and \[f\]. Then find the derivative of the obtained equation w.r.t \[x\]. Further use the conversion \[\operatorname{cosec} x = \dfrac{1}{{\sin x}}\] to get the required answer. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that \[g\] is the inverse of the function \[f\] i.e., \[g\left( x \right) = {f^{ - 1}}\left( x \right)\].
So, we have \[f\left\{ {g\left( x \right)} \right\} = x..........................................\left( 1 \right)\]
Differentiating equation (1) w.r.t ‘\[x\]’, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f\left\{ {g\left( x \right)} \right\}} \right] = \dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow f'\left\{ {g\left( x \right)} \right\} \times g'\left( x \right) = 1..............................\left( 2 \right) \\
\]
But give that \[f'\left( x \right) = \sin x\]
Now, consider \[f'\left\{ {g\left( x \right)} \right\}\]
\[ \Rightarrow f'\left\{ {g\left( x \right)} \right\} = \sin \left\{ {g\left( x \right)} \right\}........................\left( 3 \right)\]
From equation (2) and (3), we have
\[
\Rightarrow \sin \left\{ {g\left( x \right)} \right\} \times g'\left( x \right) = 1 \\
\Rightarrow g'\left( x \right) = \dfrac{1}{{\sin \left\{ {g\left( x \right)} \right\}}} = \operatorname{cosec} \left\{ {g\left( x \right)} \right\}{\text{ }}\left[ {\because \operatorname{cosec} x = \dfrac{1}{{\sin x}}} \right] \\
\therefore g'\left( x \right) = \operatorname{cosec} \left\{ {g\left( x \right)} \right\} \\
\]
Thus, the correct option is A. \[\operatorname{cosec} \left\{ {g\left( x \right)} \right\}\]
Note: In mathematics, an inverse function (or anti-function0 is a function that reverts another function. For example if a function \[f\] applied to an input \[x\] gives a result of \[y\], then applying its inverse function \[g\] to \[y\] gives the result \[x\], and vice-versa, i.e., \[f\left( x \right) = y\] if and only if \[g\left( y \right) = x\].
Complete step-by-step answer:
Given that \[g\] is the inverse of the function \[f\] i.e., \[g\left( x \right) = {f^{ - 1}}\left( x \right)\].
So, we have \[f\left\{ {g\left( x \right)} \right\} = x..........................................\left( 1 \right)\]
Differentiating equation (1) w.r.t ‘\[x\]’, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f\left\{ {g\left( x \right)} \right\}} \right] = \dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow f'\left\{ {g\left( x \right)} \right\} \times g'\left( x \right) = 1..............................\left( 2 \right) \\
\]
But give that \[f'\left( x \right) = \sin x\]
Now, consider \[f'\left\{ {g\left( x \right)} \right\}\]
\[ \Rightarrow f'\left\{ {g\left( x \right)} \right\} = \sin \left\{ {g\left( x \right)} \right\}........................\left( 3 \right)\]
From equation (2) and (3), we have
\[
\Rightarrow \sin \left\{ {g\left( x \right)} \right\} \times g'\left( x \right) = 1 \\
\Rightarrow g'\left( x \right) = \dfrac{1}{{\sin \left\{ {g\left( x \right)} \right\}}} = \operatorname{cosec} \left\{ {g\left( x \right)} \right\}{\text{ }}\left[ {\because \operatorname{cosec} x = \dfrac{1}{{\sin x}}} \right] \\
\therefore g'\left( x \right) = \operatorname{cosec} \left\{ {g\left( x \right)} \right\} \\
\]
Thus, the correct option is A. \[\operatorname{cosec} \left\{ {g\left( x \right)} \right\}\]
Note: In mathematics, an inverse function (or anti-function0 is a function that reverts another function. For example if a function \[f\] applied to an input \[x\] gives a result of \[y\], then applying its inverse function \[g\] to \[y\] gives the result \[x\], and vice-versa, i.e., \[f\left( x \right) = y\] if and only if \[g\left( y \right) = x\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

