
If \[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\] , then
(a) \[f\] is derivable for all \[x\], with $\left| x \right|<1$
(b) $f$ is not derivable at $x=1$
(c) $f$ is not derivable at \[x=-1\]
(d) \[f\] is derivable for all \[x\], with \[\left| x \right|>1\]
Answer
217.8k+ views
Hint: Check the differentiability of f(x) at the end points of its domain and check which option is matching with your answer. Also use the half angle formula in terms of “tan” for substitution.
In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
\[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\]
Now, to simplify the problem substitute
$x=\tan \theta $ In the above problem. Therefore, $\theta ={{\tan }^{-1}}x$…………………………………. (1)
\[\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)\]
To proceed further we should know the Half Angle formula for \[\sin 2\theta \] which is given below,
Formula:
\[\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}\]
Therefore \[f(x)\] will become,
\[\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\] ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
\[{{\sin }^{-1}}\left( \sin x \right)=-\pi -x\] For \[x<\dfrac{-\pi }{2}\]
For \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\]
\[{{\sin }^{-1}}\left( \sin x \right)=\pi -x\] For \[x>\dfrac{\pi }{2}\]
We can write equation (2) according to above formulae by replacing ‘x’ with \[2\theta \]
As, \[f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\]
\[f(x)=-\pi -2\theta \] For \[2\theta <\dfrac{-\pi }{2}\]……………………………. (2)
\[f(x)=2\theta \] For \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]…………………….. (3)
\[f(x)=\pi -2\theta \] For \[2\theta >\dfrac{\pi }{2}\]……………………………… (4)
Before substituting the value of \[\theta \] we will first convert limits,
As, \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]
Dividing by 2 we will get,
\[\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}\]
Take tangent of all angles,
\[\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -1\le \tan \theta \le 1\]
From (1) we can write above equation as,
\[\therefore -1\le x\le 1\]………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting $x=\tan \theta $ from (1) and replacing limits with the help of (5),
\[f(x)=-\pi -2\tan x\] For \[x<-1\]
\[f(x)=2\tan x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2\tan x\] For \[x>1\]
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1\]\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at -1…………………………………………. (6)
\[L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at 1………………………………………….. (7)
As, f(x) is not differentiable at \[x=1\] and \[x=-1\] we can say that f(x) is only differentiable only in its domain with open intervals i.e. In \[(-1,1)\].
\[\because \][From (6) and (7)]
The domain can also be expressed as \[\left| x \right|<1\]
This can be shown as follows,
\[\left| x \right|<1\equiv \] \[x<1\] And \[-x<1\]
\[\equiv \]\[x\in [0,1)\] And \[x>-1\]
\[\equiv \]\[x\in [0,1)\] And \[x\in (-1,0]\]
\[\left| x \right|<1\] \[\equiv \] \[x\in (-1,1)\]
Option (a) (b) and (c) are the correct answers.
Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
\[f(x)=-\pi -2{{\tan }^{-1}}x\] For \[x<-1\]
\[f(x)=2{{\tan }^{-1}}x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2{{\tan }^{-1}}x\] For \[x>1\]
In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
\[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\]
Now, to simplify the problem substitute
$x=\tan \theta $ In the above problem. Therefore, $\theta ={{\tan }^{-1}}x$…………………………………. (1)
\[\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)\]
To proceed further we should know the Half Angle formula for \[\sin 2\theta \] which is given below,
Formula:
\[\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}\]
Therefore \[f(x)\] will become,
\[\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\] ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
\[{{\sin }^{-1}}\left( \sin x \right)=-\pi -x\] For \[x<\dfrac{-\pi }{2}\]
For \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\]
\[{{\sin }^{-1}}\left( \sin x \right)=\pi -x\] For \[x>\dfrac{\pi }{2}\]
We can write equation (2) according to above formulae by replacing ‘x’ with \[2\theta \]
As, \[f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\]
\[f(x)=-\pi -2\theta \] For \[2\theta <\dfrac{-\pi }{2}\]……………………………. (2)
\[f(x)=2\theta \] For \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]…………………….. (3)
\[f(x)=\pi -2\theta \] For \[2\theta >\dfrac{\pi }{2}\]……………………………… (4)
Before substituting the value of \[\theta \] we will first convert limits,
As, \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]
Dividing by 2 we will get,
\[\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}\]
Take tangent of all angles,
\[\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -1\le \tan \theta \le 1\]
From (1) we can write above equation as,
\[\therefore -1\le x\le 1\]………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting $x=\tan \theta $ from (1) and replacing limits with the help of (5),
\[f(x)=-\pi -2\tan x\] For \[x<-1\]
\[f(x)=2\tan x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2\tan x\] For \[x>1\]
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1\]\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at -1…………………………………………. (6)
\[L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at 1………………………………………….. (7)
As, f(x) is not differentiable at \[x=1\] and \[x=-1\] we can say that f(x) is only differentiable only in its domain with open intervals i.e. In \[(-1,1)\].
\[\because \][From (6) and (7)]
The domain can also be expressed as \[\left| x \right|<1\]
This can be shown as follows,
\[\left| x \right|<1\equiv \] \[x<1\] And \[-x<1\]
\[\equiv \]\[x\in [0,1)\] And \[x>-1\]
\[\equiv \]\[x\in [0,1)\] And \[x\in (-1,0]\]
\[\left| x \right|<1\] \[\equiv \] \[x\in (-1,1)\]
Option (a) (b) and (c) are the correct answers.
Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
\[f(x)=-\pi -2{{\tan }^{-1}}x\] For \[x<-1\]
\[f(x)=2{{\tan }^{-1}}x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2{{\tan }^{-1}}x\] For \[x>1\]
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

