
If $f:R\to \left( -1,1 \right)$ be a function defined by $f\left( x \right)=\dfrac{x}{1+\left| x \right|}$, then $f$ is:
A. One-one but not onto.
B. Onto but not one-one.
C. Neither one-one nor onto.
D. Both one-one and onto.
Answer
517.8k+ views
Hint: For solving this question you should know about the general solution of a function and the terms one-one and onto for a function. In this problem we will check that the function is one-one or not and that is onto or not. We will check both these and come to the final decision.
Complete step by step answer:
According to our question it is asked to check if the function $f\left( x \right)=\dfrac{x}{1+\left| x \right|}$ is one-one or onto or not. So,
$f\left( x \right)=\dfrac{x}{1+\left| x \right|}$
We know that: $\left| x \right|=\left\{ \begin{align}
& x,x\ge 0 \\
& -x,x<0 \\
\end{align} \right.$
So,
$f\left( x \right)=\left\{ \begin{align}
& \dfrac{x}{1+x},x\ge 0 \\
& \dfrac{x}{1-x},x<0 \\
\end{align} \right.$
Now, checking for one-one for $x\ge 0$,
$f\left( {{x}_{1}} \right)=\dfrac{{{x}_{1}}}{1+{{x}_{1}}},f\left( {{x}_{2}} \right)=\dfrac{{{x}_{2}}}{1+{{x}_{2}}}$
Putting $f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)$ , we get,
$\begin{align}
& \dfrac{{{x}_{1}}}{1+{{x}_{1}}}=\dfrac{{{x}_{2}}}{1+{{x}_{2}}} \\
& \Rightarrow {{x}_{1}}\left( 1+{{x}_{2}} \right)={{x}_{2}}\left( 1+{{x}_{1}} \right) \\
& \Rightarrow {{x}_{1}}+{{x}_{1}}{{x}_{2}}={{x}_{2}}+{{x}_{2}}{{x}_{1}} \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}$
And for $x<0$, we have,
$f\left( {{x}_{1}} \right)=\dfrac{{{x}_{1}}}{1-{{x}_{1}}},f\left( {{x}_{2}} \right)=\dfrac{{{x}_{2}}}{1-{{x}_{2}}}$
Putting $f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)$ , we get,
$\begin{align}
& \dfrac{{{x}_{1}}}{1-{{x}_{1}}}=\dfrac{{{x}_{2}}}{1-{{x}_{2}}} \\
& \Rightarrow {{x}_{1}}\left( 1-{{x}_{2}} \right)={{x}_{2}}\left( 1-{{x}_{1}} \right) \\
& \Rightarrow {{x}_{1}}-{{x}_{1}}{{x}_{2}}={{x}_{2}}-{{x}_{2}}{{x}_{1}} \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}$
Hence if $f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)$ , therefore $f$ is one-one.
Let us now check for onto. So,
$f\left( x \right)=\left\{ \begin{align}
& \dfrac{x}{1+x},x\ge 0 \\
& \dfrac{x}{1-x},x<0 \\
\end{align} \right.$
For $x\ge 0,f\left( x \right)=\dfrac{x}{1+x}$
Let $f\left( x \right)=y$,
$\begin{align}
& \Rightarrow y=\dfrac{x}{1+x} \\
& \Rightarrow y\left( 1+x \right)=x \\
& \Rightarrow y+xy=x \\
& \Rightarrow x=\dfrac{y}{1-x} \\
\end{align}$
Let $f\left( x \right)=y$,
$\begin{align}
& \Rightarrow y=\dfrac{x}{1-x} \\
& \Rightarrow y\left( 1-x \right)=x \\
& \Rightarrow y-xy=x \\
& \Rightarrow x+xy=y \\
& \Rightarrow x\left( 1+y \right)=y \\
& \Rightarrow x=\dfrac{y}{1+y} \\
\end{align}$
Thus, $x=\dfrac{y}{1-y}$ for $x\ge 0$ and $x=\dfrac{y}{1+y}$ for $x < 0$.
Here $y\in \left\{ x\in R:-1< x < 1 \right\}$
That is, the value of $y$ is from -1 to 1, $-1 < y < 1$.
If $y=1$, then $x=\dfrac{y}{1-y}$ will not be defined.
If $y=-1$, then $x=\dfrac{y}{1+y}$ will not be defined.
But here $-1 < y < 1$, so $x$ is defined for all values of $y$ and $x\in R$.
Therefore $f$ is onto.
So, the correct answer is “Option D”.
Note: While solving this type of questions you should be careful about checking the function $f\left( x \right)$ for one-one and for onto conditions. If both are satisfied, then both the options will be right otherwise the one that is valid will be right.
Complete step by step answer:
According to our question it is asked to check if the function $f\left( x \right)=\dfrac{x}{1+\left| x \right|}$ is one-one or onto or not. So,
$f\left( x \right)=\dfrac{x}{1+\left| x \right|}$
We know that: $\left| x \right|=\left\{ \begin{align}
& x,x\ge 0 \\
& -x,x<0 \\
\end{align} \right.$
So,
$f\left( x \right)=\left\{ \begin{align}
& \dfrac{x}{1+x},x\ge 0 \\
& \dfrac{x}{1-x},x<0 \\
\end{align} \right.$
Now, checking for one-one for $x\ge 0$,
$f\left( {{x}_{1}} \right)=\dfrac{{{x}_{1}}}{1+{{x}_{1}}},f\left( {{x}_{2}} \right)=\dfrac{{{x}_{2}}}{1+{{x}_{2}}}$
Putting $f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)$ , we get,
$\begin{align}
& \dfrac{{{x}_{1}}}{1+{{x}_{1}}}=\dfrac{{{x}_{2}}}{1+{{x}_{2}}} \\
& \Rightarrow {{x}_{1}}\left( 1+{{x}_{2}} \right)={{x}_{2}}\left( 1+{{x}_{1}} \right) \\
& \Rightarrow {{x}_{1}}+{{x}_{1}}{{x}_{2}}={{x}_{2}}+{{x}_{2}}{{x}_{1}} \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}$
And for $x<0$, we have,
$f\left( {{x}_{1}} \right)=\dfrac{{{x}_{1}}}{1-{{x}_{1}}},f\left( {{x}_{2}} \right)=\dfrac{{{x}_{2}}}{1-{{x}_{2}}}$
Putting $f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)$ , we get,
$\begin{align}
& \dfrac{{{x}_{1}}}{1-{{x}_{1}}}=\dfrac{{{x}_{2}}}{1-{{x}_{2}}} \\
& \Rightarrow {{x}_{1}}\left( 1-{{x}_{2}} \right)={{x}_{2}}\left( 1-{{x}_{1}} \right) \\
& \Rightarrow {{x}_{1}}-{{x}_{1}}{{x}_{2}}={{x}_{2}}-{{x}_{2}}{{x}_{1}} \\
& \Rightarrow {{x}_{1}}={{x}_{2}} \\
\end{align}$
Hence if $f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)$ , therefore $f$ is one-one.
Let us now check for onto. So,
$f\left( x \right)=\left\{ \begin{align}
& \dfrac{x}{1+x},x\ge 0 \\
& \dfrac{x}{1-x},x<0 \\
\end{align} \right.$
For $x\ge 0,f\left( x \right)=\dfrac{x}{1+x}$
Let $f\left( x \right)=y$,
$\begin{align}
& \Rightarrow y=\dfrac{x}{1+x} \\
& \Rightarrow y\left( 1+x \right)=x \\
& \Rightarrow y+xy=x \\
& \Rightarrow x=\dfrac{y}{1-x} \\
\end{align}$
Let $f\left( x \right)=y$,
$\begin{align}
& \Rightarrow y=\dfrac{x}{1-x} \\
& \Rightarrow y\left( 1-x \right)=x \\
& \Rightarrow y-xy=x \\
& \Rightarrow x+xy=y \\
& \Rightarrow x\left( 1+y \right)=y \\
& \Rightarrow x=\dfrac{y}{1+y} \\
\end{align}$
Thus, $x=\dfrac{y}{1-y}$ for $x\ge 0$ and $x=\dfrac{y}{1+y}$ for $x < 0$.
Here $y\in \left\{ x\in R:-1< x < 1 \right\}$
That is, the value of $y$ is from -1 to 1, $-1 < y < 1$.
If $y=1$, then $x=\dfrac{y}{1-y}$ will not be defined.
If $y=-1$, then $x=\dfrac{y}{1+y}$ will not be defined.
But here $-1 < y < 1$, so $x$ is defined for all values of $y$ and $x\in R$.
Therefore $f$ is onto.
So, the correct answer is “Option D”.
Note: While solving this type of questions you should be careful about checking the function $f\left( x \right)$ for one-one and for onto conditions. If both are satisfied, then both the options will be right otherwise the one that is valid will be right.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

