
If \[f\left( x \right) = {x^2} + kx + 1\] is monotonic increasing in \[\left[ {1,2} \right]\] then the minimum values of \[k\] is
A.4
B.\[-4\]
C.2
D.\[-2\]
Answer
564.9k+ views
Hint: Here we need to find the minimum value of the given variable. The given function is increasing function. So we will first differentiate the given function and form an inequality such that its derivative will be greater than zero. From there, there we will get the relation between the two variables. We will then simplify it further to get the required minimum value of the given variable.
Complete step-by-step answer:
The given function is \[f\left( x \right) = {x^2} + kx + 1\].
It is given that the given function is monotonic increasing in \[\left[ {1,2} \right]\]. So, its derivative will be greater than zero.
Now, we will differentiate the given function with respect to \[x\] .
\[ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^2} + kx + 1} \right)\]
On differentiating each term, we get
\[ \Rightarrow f'\left( x \right) = 2x + k\]
As the given function is a monotonic increasing function.
Therefore,
\[ \Rightarrow f'\left( x \right) > 0\]
Now, we will substitute the value of \[f'\left( x \right)\] obtained in equation 1 here.
\[ \Rightarrow 2x + k > 0\]
Subtracting the term \[2x\] from both the sides, we get
\[ \Rightarrow 2x + k - 2x > 0 - 2x\]
\[ \Rightarrow k > - 2x\] ………. \[\left( 1 \right)\]
As it is given that:
\[ \Rightarrow 1 \le x \le 2\]
Now, we will multiply \[ - 2\] to the given inequality.
\[ \Rightarrow - 4 \ge - 2x \ge 2\]
On rewriting the inequality, we get
\[ \Rightarrow - 2 \le - 2x \le - 4\] …….. \[\left( 2 \right)\]
Now, we will compare inequality of equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\], we get
\[ \Rightarrow k \ge - 2\]
Hence, the minimum value of \[k\] is equal to \[ - 2\].
Hence, the correct option is option D.
Note: The given function is the monotonic increasing function. A monotonic increasing function is defined as a function whose value will increase when we increase the value of the variable \[x\] , here \[x\] includes the real number. We should remember that the derivative of the monotonic increasing function will always be greater than zero.
Complete step-by-step answer:
The given function is \[f\left( x \right) = {x^2} + kx + 1\].
It is given that the given function is monotonic increasing in \[\left[ {1,2} \right]\]. So, its derivative will be greater than zero.
Now, we will differentiate the given function with respect to \[x\] .
\[ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^2} + kx + 1} \right)\]
On differentiating each term, we get
\[ \Rightarrow f'\left( x \right) = 2x + k\]
As the given function is a monotonic increasing function.
Therefore,
\[ \Rightarrow f'\left( x \right) > 0\]
Now, we will substitute the value of \[f'\left( x \right)\] obtained in equation 1 here.
\[ \Rightarrow 2x + k > 0\]
Subtracting the term \[2x\] from both the sides, we get
\[ \Rightarrow 2x + k - 2x > 0 - 2x\]
\[ \Rightarrow k > - 2x\] ………. \[\left( 1 \right)\]
As it is given that:
\[ \Rightarrow 1 \le x \le 2\]
Now, we will multiply \[ - 2\] to the given inequality.
\[ \Rightarrow - 4 \ge - 2x \ge 2\]
On rewriting the inequality, we get
\[ \Rightarrow - 2 \le - 2x \le - 4\] …….. \[\left( 2 \right)\]
Now, we will compare inequality of equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\], we get
\[ \Rightarrow k \ge - 2\]
Hence, the minimum value of \[k\] is equal to \[ - 2\].
Hence, the correct option is option D.
Note: The given function is the monotonic increasing function. A monotonic increasing function is defined as a function whose value will increase when we increase the value of the variable \[x\] , here \[x\] includes the real number. We should remember that the derivative of the monotonic increasing function will always be greater than zero.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

