Answer
Verified
400.8k+ views
Hint: We have given a function \[f\left( x \right)\] and we have to solve the integration. Firstly, we have to find the value of $f\left( x \right)$. The function $f\left( x \right)$ is $\dfrac{\infty }{\infty }$ form, so we cannot put the limit in it. We have to simplify it. Once we get the value of $f\left( x \right)$, we can solve the integration. In integration, firstly we will simplify the integral function by putting it equal to another variable. Then, we apply an integration formula to solve it.
Complete step-by-step solution:
We have given that $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 1$ and
We have to calculate value of $\int {\dfrac{{xf\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}} $
Now $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 0$
It is $\dfrac{\infty }{\infty }$ form as $x > 0$
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - \dfrac{1}{{{x^n}}}}}{{{x^n} + \dfrac{1}{{{x^n}}}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{{{x^{2n}} - 1}}{{{x^n}}}}}{{\dfrac{{{x^{2n}} + 1}}{{{x^n}}}}}$
The bottom of both numerator and denominator are hence cancel it, then
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}} - 1}}{{{x^{2n}} + 1}}$
It is again $\dfrac{\infty }{\infty }$ form
Now, Take \[{x^{2n}}\] as common in both numerator and denominator
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}}\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{{x^{2n}}\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}}$
$ \Rightarrow \,\,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$--------(1)
Now let consider
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot f\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $
From equation (1) the value of \[f(x) = 1\], then
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot 1\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $------------(2)
Putting $x + \sqrt {1 + {x^2}} = t$-----------(a)
Differentiating both sides, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{1}{2}\dfrac{{2x}}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
On simplification, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{x}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
$ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} + x}}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow $Now value of $\sqrt {1 + {x^2}} + x = t$ so, we have
$ \Rightarrow \,\,\dfrac{t}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow \,\,\dfrac{{dx}}{{\sqrt {1 + {x^2}} }} = \dfrac{1}{t}dt$----------(b)
Again consider,
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} = t$
Subtract x on both side, then
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} - x = t - x$
$ \Rightarrow \sqrt {1 + {x^2}} = t - x$
Squaring both sides, we get
$ \Rightarrow 1 + {x^2} = {\left( {t - x} \right)^2}$
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] on RHS, then
\[ \Rightarrow 1 + {x^2} = {t^2} + {x^2} - 2tx\]
Subtract ${x^2}$ on both side
$ \Rightarrow 1 + {x^2} - {x^2} = {t^2} + {x^2} - 2tx - {x^2}$
On simplification, we get
$ \Rightarrow \,\,\,1 = {t^2} - 2tx$
or
$ \Rightarrow 2tx = {t^2} - 1$
Divide both side by 2t
$ \Rightarrow x = \dfrac{{{t^2} - 1}}{{2t}}$---------(c)
Now substitute (a), (b) and (c) values in (2), then
$ \Rightarrow \,\,\,I = \int {\dfrac{{{t^2} - 1}}{{2t}}\ln \left( t \right)\dfrac{{dt}}{t}} $
$ \Rightarrow \,\,\,\,I = \dfrac{1}{2}\int {\dfrac{{{t^2} - 1}}{{{t^2}}}\ln \left( t \right)dt} $
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\int {\left( {1 - \dfrac{1}{{{t^2}}}} \right)\ln \left( t \right)dt} $
Apply integration separately
$ \Rightarrow \,\,I = \dfrac{1}{2}\int {\ln \left( t \right)dt - \dfrac{1}{2}\int {\dfrac{{\ln \left( t \right)}}{{{t^2}}}dt} } $
In $\ln \left( t \right)$apply integration of product
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\left[ {t\left( {\ln \left( t \right) - 1} \right)} \right] - \dfrac{1}{2}\left[ { - \dfrac{1}{t}\ln t - \dfrac{1}{t}} \right] + c$
$ \Rightarrow \,\,\,I = \dfrac{{t\ln \left( t \right)}}{2} - \dfrac{t}{2} + \dfrac{{\ln \left( t \right)}}{{2t}} + \dfrac{1}{{2t}} + c$
Substitute the value of t
${\rm I} = \dfrac{{x + \sqrt {{x^2} + 1} \ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{2} + \dfrac{{x + \sqrt {{x^2} + 1} }}{2} + \dfrac{{\ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + \dfrac{1}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + C$
Hence the correct answer is option ‘D’.
Note: Integration is a way of adding slices to find the whole integration can be used to find are, volume and central points. It is used to find many useful quantities.
i) Limit of a function: The limit of a function is a fundamental concept in calculus and analysis concerning the behavior of the function near a particular input.
ii) Differentiation: The derivative of a function of a real variable measures the sensitivity to the change of a function with respect to change in argument.
Complete step-by-step solution:
We have given that $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 1$ and
We have to calculate value of $\int {\dfrac{{xf\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}} $
Now $f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - {x^{ - n}}}}{{{x^n} + {x^{ - n}}}},x > 0$
It is $\dfrac{\infty }{\infty }$ form as $x > 0$
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^n} - \dfrac{1}{{{x^n}}}}}{{{x^n} + \dfrac{1}{{{x^n}}}}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\dfrac{{{x^{2n}} - 1}}{{{x^n}}}}}{{\dfrac{{{x^{2n}} + 1}}{{{x^n}}}}}$
The bottom of both numerator and denominator are hence cancel it, then
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}} - 1}}{{{x^{2n}} + 1}}$
It is again $\dfrac{\infty }{\infty }$ form
Now, Take \[{x^{2n}}\] as common in both numerator and denominator
$ \Rightarrow \,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^{2n}}\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{{x^{2n}}\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}}$
$ \Rightarrow \,\,\,f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left( {1 - \dfrac{1}{{{x^{2n}}}}} \right)}}{{\left( {1 + \dfrac{1}{{{x^{2n}}}}} \right)}} = \dfrac{{1 - \dfrac{1}{\infty }}}{{1 + \dfrac{1}{\infty }}} = \dfrac{{1 - 0}}{{1 + 0}} = 1$--------(1)
Now let consider
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot f\left( x \right)\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $
From equation (1) the value of \[f(x) = 1\], then
$ \Rightarrow \,\,\,\,{\rm I} = \int {\dfrac{{x \cdot 1\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {\left( {1 + {x^2}} \right)} }}dx} $------------(2)
Putting $x + \sqrt {1 + {x^2}} = t$-----------(a)
Differentiating both sides, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{1}{2}\dfrac{{2x}}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
On simplification, we get
\[ \Rightarrow \,\,\,\left( {1 + \dfrac{x}{{\sqrt {1 + {x^2}} }}} \right)dx = dt\]
$ \Rightarrow \dfrac{{\sqrt {1 + {x^2}} + x}}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow $Now value of $\sqrt {1 + {x^2}} + x = t$ so, we have
$ \Rightarrow \,\,\dfrac{t}{{\sqrt {1 + {x^2}} }}dx = dt$
$ \Rightarrow \,\,\dfrac{{dx}}{{\sqrt {1 + {x^2}} }} = \dfrac{1}{t}dt$----------(b)
Again consider,
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} = t$
Subtract x on both side, then
$ \Rightarrow \,\,x + \sqrt {1 + {x^2}} - x = t - x$
$ \Rightarrow \sqrt {1 + {x^2}} = t - x$
Squaring both sides, we get
$ \Rightarrow 1 + {x^2} = {\left( {t - x} \right)^2}$
Apply the formula \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\] on RHS, then
\[ \Rightarrow 1 + {x^2} = {t^2} + {x^2} - 2tx\]
Subtract ${x^2}$ on both side
$ \Rightarrow 1 + {x^2} - {x^2} = {t^2} + {x^2} - 2tx - {x^2}$
On simplification, we get
$ \Rightarrow \,\,\,1 = {t^2} - 2tx$
or
$ \Rightarrow 2tx = {t^2} - 1$
Divide both side by 2t
$ \Rightarrow x = \dfrac{{{t^2} - 1}}{{2t}}$---------(c)
Now substitute (a), (b) and (c) values in (2), then
$ \Rightarrow \,\,\,I = \int {\dfrac{{{t^2} - 1}}{{2t}}\ln \left( t \right)\dfrac{{dt}}{t}} $
$ \Rightarrow \,\,\,\,I = \dfrac{1}{2}\int {\dfrac{{{t^2} - 1}}{{{t^2}}}\ln \left( t \right)dt} $
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\int {\left( {1 - \dfrac{1}{{{t^2}}}} \right)\ln \left( t \right)dt} $
Apply integration separately
$ \Rightarrow \,\,I = \dfrac{1}{2}\int {\ln \left( t \right)dt - \dfrac{1}{2}\int {\dfrac{{\ln \left( t \right)}}{{{t^2}}}dt} } $
In $\ln \left( t \right)$apply integration of product
$ \Rightarrow \,\,\,I = \dfrac{1}{2}\left[ {t\left( {\ln \left( t \right) - 1} \right)} \right] - \dfrac{1}{2}\left[ { - \dfrac{1}{t}\ln t - \dfrac{1}{t}} \right] + c$
$ \Rightarrow \,\,\,I = \dfrac{{t\ln \left( t \right)}}{2} - \dfrac{t}{2} + \dfrac{{\ln \left( t \right)}}{{2t}} + \dfrac{1}{{2t}} + c$
Substitute the value of t
${\rm I} = \dfrac{{x + \sqrt {{x^2} + 1} \ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{2} + \dfrac{{x + \sqrt {{x^2} + 1} }}{2} + \dfrac{{\ln \left( {x + \sqrt {{x^2} + 1} } \right)}}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + \dfrac{1}{{2\left( {x + \sqrt {{x^2} + 1} } \right)}} + C$
Hence the correct answer is option ‘D’.
Note: Integration is a way of adding slices to find the whole integration can be used to find are, volume and central points. It is used to find many useful quantities.
i) Limit of a function: The limit of a function is a fundamental concept in calculus and analysis concerning the behavior of the function near a particular input.
ii) Differentiation: The derivative of a function of a real variable measures the sensitivity to the change of a function with respect to change in argument.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Name 10 Living and Non living things class 9 biology CBSE