Answer

Verified

447.3k+ views

**Hint:**We recall the definition of composite function and the condition for a function to be one-one. . We assume any two elements ${{x}_{1}},{{x}_{2}}$ in $A$ and use the condition of one-one for $f:A\to B$ and $g:B\to C$ to prove $gof\left( {{x}_{1}} \right)=gof\left( {{x}_{2}} \right)\Rightarrow {{x}_{1}}={{x}_{2}}$.

**Complete step-by-step solution**We know that a function is a relation from the domain set to range set where all the elements of the domain are mapped to an element of range and one element of domain cannot be mapped to two element of range. If we have the single valued functions (takes only one element at a time) $f:A\to B$ and $g:B\to C$ then the composite function from $gof$ is defined for some element $x\in A$ as

\[gof:A\to C,gof\left( x \right)=g\left( f\left( x \right) \right)\]

We also know that one-one function is a function which maps exactly one element of the domain set to exactly one element of the range set. We have first $f:A\to B$ as a single valued one-one function. Here the domain set is $A$ and the range set is $B.$ Let us we have any two elements in the range and domain as ${{x}_{1}},{{x}_{2}}\in A$. Then by the condition of one-one function we have,

\[f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right)\Rightarrow {{x}_{1}}={{x}_{2}}....\left( 1 \right)\]

The second single valued one-one function is given to us $g:B\to C$. Here the domain set is $B$ and the range set is $C.$ Let us have any two elements in the domain and range as ${{y}_{1}},{{y}_{2}}\in B$ and Then by the condition of one-one function we have,

\[g\left( {{y}_{1}} \right)=g\left( {{y}_{2}} \right)\Rightarrow {{y}_{1}}={{y}_{2}}....\left( 2 \right)\]

The composite function $gof$ sends elements form set $A$ to $C$. Let us take elements ${{x}_{1}},{{x}_{2}}\in A$. Let us assume $gof\left( {{x}_{1}} \right)=gof\left( {{x}_{2}} \right)$. If we prove ${{x}_{1}}={{x}_{2}}$ indirectly we prove $gof$ as one-one functon. Let us proceed with our assumption,

\[\begin{align}

& gof\left( {{x}_{1}} \right)=gof\left( {{x}_{2}} \right) \\

& \Rightarrow g\left( f\left( {{x}_{1}} \right) \right)=g\left( f\left( {{x}_{2}} \right) \right) \\

\end{align}\]

Since $g$ is a one-one function we have

\[\begin{align}

& f\left( {{x}_{1}} \right)=f\left( {{x}_{2}} \right) \\

& \Rightarrow {{x}_{1}}={{x}_{2}}\left( \because f\text{ is one-one} \right) \\

\end{align}\]

**Hence $gof$ is one-one function.**

**Note:**The other name of one-one function is injective function. If all the elements from the range set are mapped then the function is called surjective or onto. If a function is both one-one and onto then it is called bijective. If $f,g$ are bijective then $fog,gof$ are also bijective.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The only snake that builds a nest is a Krait b King class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE