Answer
Verified
494.1k+ views
Hint: First eliminate the trigonometric values, i.e., eliminate $\theta $. Then find the general equation using other terms. And compare with the general equations of the straight line or the circle.
Complete step-by-step answer:
Now let’s consider the following equation given in the question;
$\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r$
Now let’s consider,
$\dfrac{x-{{x}_{1}}}{\cos \theta }=r$
So,
$x-{{x}_{1}}=r\cos \theta $ …………..(i)
Now let’s consider,
$\dfrac{y-{{y}_{1}}}{\sin \theta }=r$
So,
$y-{{y}_{1}}=r\sin \theta $ …………..(ii)
Now let consider the equations (i) and (ii) and square and add them;
${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta $
Taking out the common term, we get
${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)$
We know the trigonometric identity, $\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right)$, substituting this value in the above equation, we get
${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}........(ii)$
We know the general equation of circle is ${{(x-a)}^{2}}+{{(x-b)}^{2}}={{r}^{2}}$ , here (a, b) are the centre of the circle and ‘r’ is the radius of the circle.
Comparing equation (ii) with the general equation of circle, we get
$({{x}_{1}},{{y}_{1}})$ as the centre and $'r'$ as the radius of the circle.
Hence, $\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r$ represents equation of circle with a known centre and a given radius
So, option (d) is the correct answer.
Note: In this type of equation, there is always a confusion of solving parametric equations, so one should try to eliminate terms in terms of $'\theta '$.
Another approach is squaring the given ratios directly and then adding them, this will also give the same approach.
Common mistake made by students is when they see the equation ${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta $, they start expanding the left hand side. This will be a tedious and lengthy process.
Complete step-by-step answer:
Now let’s consider the following equation given in the question;
$\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r$
Now let’s consider,
$\dfrac{x-{{x}_{1}}}{\cos \theta }=r$
So,
$x-{{x}_{1}}=r\cos \theta $ …………..(i)
Now let’s consider,
$\dfrac{y-{{y}_{1}}}{\sin \theta }=r$
So,
$y-{{y}_{1}}=r\sin \theta $ …………..(ii)
Now let consider the equations (i) and (ii) and square and add them;
${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta $
Taking out the common term, we get
${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)$
We know the trigonometric identity, $\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \right)$, substituting this value in the above equation, we get
${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}........(ii)$
We know the general equation of circle is ${{(x-a)}^{2}}+{{(x-b)}^{2}}={{r}^{2}}$ , here (a, b) are the centre of the circle and ‘r’ is the radius of the circle.
Comparing equation (ii) with the general equation of circle, we get
$({{x}_{1}},{{y}_{1}})$ as the centre and $'r'$ as the radius of the circle.
Hence, $\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r$ represents equation of circle with a known centre and a given radius
So, option (d) is the correct answer.
Note: In this type of equation, there is always a confusion of solving parametric equations, so one should try to eliminate terms in terms of $'\theta '$.
Another approach is squaring the given ratios directly and then adding them, this will also give the same approach.
Common mistake made by students is when they see the equation ${{(x-{{x}_{1}})}^{2}}+{{(y-{{y}_{1}})}^{2}}={{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta $, they start expanding the left hand side. This will be a tedious and lengthy process.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE