Answer

Verified

450.3k+ views

Hint: Use the identities such as\[\tan A=\dfrac{\sin A}{\cos A},sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B,cos\left( A+B \right)=\cos A\cos B-\sin A\sin B\] in the question properly and wisely. Also try to simplify it whenever possible. At first try to convert all the terms in tan ratios to respective sin and cos ratios and after doing necessary calculation try to change the terms in cot ratios and finally use identity $\cot \theta =\dfrac{1}{\tan \theta }$ to get the desired result.

“Complete step-by-step answer:”

We are given the following equation,

$\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1$………….(i)

Now by moving $\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$ from left hand side to right hand side of the equation (i) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$………….(ii)

Now we are using the formula,

\[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] and $\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$

And substituting in equation (ii) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\cos \alpha \sin \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(iii)

Now by taking LCM and further simplifying in right hand side of equation (iii) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \alpha \cos \left( \alpha -\beta \right)-\cos \alpha \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………….(iv)

Now in the equation (iv) we will use the identity \[sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B\] and we will apply by replacing A by $\alpha $ and B by $\left( \alpha -\beta \right)$. We get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(v)

On further simplification by multiplying $\sin \alpha $ to both the sides of equation (v) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\cos \left( \alpha -\beta \right)}$

Now by using cross multiplication we get,

${{\sin }^{2}}\gamma \cos \left( \alpha -\beta \right)=\sin \alpha \sin \beta $……………(vi)

Now we will use the identity $\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $ in equation (vi), we get,

$si{{n}^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\sin \alpha \sin \beta $…………(vii)

Now dividing $\left( \sin \alpha \sin \beta {{\sin }^{2}}\gamma \right)$ throughout whole equation (vii) we get,

$\dfrac{{{\sin }^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)}{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }=\dfrac{\sin \alpha \sin \beta }{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }$

$\Rightarrow \left( \dfrac{\cos \alpha \cos \beta }{\sin \alpha \sin \beta }+1 \right)=\left( \dfrac{1}{{{\sin }^{2}}\gamma } \right)$

$\Rightarrow $$\cot \alpha cot\beta +1=cose{{c}^{2}}\gamma $……………. (viii)

Now let’s use the identity $\cos e{{c}^{2}}\gamma =1+{{\cot }^{2}}\gamma $ in equation (viii), we get

$1+\cot \alpha \cot \beta +1=1+{{\cot }^{2}}\gamma $

$\Rightarrow \cot \alpha \cot \beta ={{\cot }^{2}}\gamma $ ……………… (ix)

Now in equation (ix) we will use the identity

$\cot \theta =\dfrac{1}{\tan \theta }$ where$\theta $ can be replace by $\alpha ,\beta ,\gamma $ we get,

$\begin{align}

& \dfrac{1}{\tan \alpha }.\dfrac{1}{\tan \beta }=\dfrac{1}{{{\tan }^{2}}\gamma } \\

& \therefore \tan \alpha \tan \beta ={{\tan }^{2}}\gamma \\

\end{align}$

Hence proved

Note: In these types of problems students should generally convert all the ‘tan’ ratios to ‘sin’ and ‘cos’ ones and then simplify using the identities.

Students should also learn the identities by heart and should be well versed how to and where to use them to get the desired results. They should also be careful while working every single step so as to avoid miscalculations.

Another approach is to expand $\tan \left( \alpha -\beta \right)$. This way will be lengthy and tedious.

“Complete step-by-step answer:”

We are given the following equation,

$\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1$………….(i)

Now by moving $\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$ from left hand side to right hand side of the equation (i) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$………….(ii)

Now we are using the formula,

\[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] and $\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$

And substituting in equation (ii) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\cos \alpha \sin \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(iii)

Now by taking LCM and further simplifying in right hand side of equation (iii) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \alpha \cos \left( \alpha -\beta \right)-\cos \alpha \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………….(iv)

Now in the equation (iv) we will use the identity \[sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B\] and we will apply by replacing A by $\alpha $ and B by $\left( \alpha -\beta \right)$. We get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(v)

On further simplification by multiplying $\sin \alpha $ to both the sides of equation (v) we get,

$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\cos \left( \alpha -\beta \right)}$

Now by using cross multiplication we get,

${{\sin }^{2}}\gamma \cos \left( \alpha -\beta \right)=\sin \alpha \sin \beta $……………(vi)

Now we will use the identity $\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $ in equation (vi), we get,

$si{{n}^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\sin \alpha \sin \beta $…………(vii)

Now dividing $\left( \sin \alpha \sin \beta {{\sin }^{2}}\gamma \right)$ throughout whole equation (vii) we get,

$\dfrac{{{\sin }^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)}{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }=\dfrac{\sin \alpha \sin \beta }{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }$

$\Rightarrow \left( \dfrac{\cos \alpha \cos \beta }{\sin \alpha \sin \beta }+1 \right)=\left( \dfrac{1}{{{\sin }^{2}}\gamma } \right)$

$\Rightarrow $$\cot \alpha cot\beta +1=cose{{c}^{2}}\gamma $……………. (viii)

Now let’s use the identity $\cos e{{c}^{2}}\gamma =1+{{\cot }^{2}}\gamma $ in equation (viii), we get

$1+\cot \alpha \cot \beta +1=1+{{\cot }^{2}}\gamma $

$\Rightarrow \cot \alpha \cot \beta ={{\cot }^{2}}\gamma $ ……………… (ix)

Now in equation (ix) we will use the identity

$\cot \theta =\dfrac{1}{\tan \theta }$ where$\theta $ can be replace by $\alpha ,\beta ,\gamma $ we get,

$\begin{align}

& \dfrac{1}{\tan \alpha }.\dfrac{1}{\tan \beta }=\dfrac{1}{{{\tan }^{2}}\gamma } \\

& \therefore \tan \alpha \tan \beta ={{\tan }^{2}}\gamma \\

\end{align}$

Hence proved

Note: In these types of problems students should generally convert all the ‘tan’ ratios to ‘sin’ and ‘cos’ ones and then simplify using the identities.

Students should also learn the identities by heart and should be well versed how to and where to use them to get the desired results. They should also be careful while working every single step so as to avoid miscalculations.

Another approach is to expand $\tan \left( \alpha -\beta \right)$. This way will be lengthy and tedious.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE