Answer
Verified
494.1k+ views
Hint: Use the identities such as\[\tan A=\dfrac{\sin A}{\cos A},sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B,cos\left( A+B \right)=\cos A\cos B-\sin A\sin B\] in the question properly and wisely. Also try to simplify it whenever possible. At first try to convert all the terms in tan ratios to respective sin and cos ratios and after doing necessary calculation try to change the terms in cot ratios and finally use identity $\cot \theta =\dfrac{1}{\tan \theta }$ to get the desired result.
“Complete step-by-step answer:”
We are given the following equation,
$\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1$………….(i)
Now by moving $\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$ from left hand side to right hand side of the equation (i) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$………….(ii)
Now we are using the formula,
\[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] and $\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$
And substituting in equation (ii) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\cos \alpha \sin \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(iii)
Now by taking LCM and further simplifying in right hand side of equation (iii) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \alpha \cos \left( \alpha -\beta \right)-\cos \alpha \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………….(iv)
Now in the equation (iv) we will use the identity \[sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B\] and we will apply by replacing A by $\alpha $ and B by $\left( \alpha -\beta \right)$. We get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(v)
On further simplification by multiplying $\sin \alpha $ to both the sides of equation (v) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\cos \left( \alpha -\beta \right)}$
Now by using cross multiplication we get,
${{\sin }^{2}}\gamma \cos \left( \alpha -\beta \right)=\sin \alpha \sin \beta $……………(vi)
Now we will use the identity $\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $ in equation (vi), we get,
$si{{n}^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\sin \alpha \sin \beta $…………(vii)
Now dividing $\left( \sin \alpha \sin \beta {{\sin }^{2}}\gamma \right)$ throughout whole equation (vii) we get,
$\dfrac{{{\sin }^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)}{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }=\dfrac{\sin \alpha \sin \beta }{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }$
$\Rightarrow \left( \dfrac{\cos \alpha \cos \beta }{\sin \alpha \sin \beta }+1 \right)=\left( \dfrac{1}{{{\sin }^{2}}\gamma } \right)$
$\Rightarrow $$\cot \alpha cot\beta +1=cose{{c}^{2}}\gamma $……………. (viii)
Now let’s use the identity $\cos e{{c}^{2}}\gamma =1+{{\cot }^{2}}\gamma $ in equation (viii), we get
$1+\cot \alpha \cot \beta +1=1+{{\cot }^{2}}\gamma $
$\Rightarrow \cot \alpha \cot \beta ={{\cot }^{2}}\gamma $ ……………… (ix)
Now in equation (ix) we will use the identity
$\cot \theta =\dfrac{1}{\tan \theta }$ where$\theta $ can be replace by $\alpha ,\beta ,\gamma $ we get,
$\begin{align}
& \dfrac{1}{\tan \alpha }.\dfrac{1}{\tan \beta }=\dfrac{1}{{{\tan }^{2}}\gamma } \\
& \therefore \tan \alpha \tan \beta ={{\tan }^{2}}\gamma \\
\end{align}$
Hence proved
Note: In these types of problems students should generally convert all the ‘tan’ ratios to ‘sin’ and ‘cos’ ones and then simplify using the identities.
Students should also learn the identities by heart and should be well versed how to and where to use them to get the desired results. They should also be careful while working every single step so as to avoid miscalculations.
Another approach is to expand $\tan \left( \alpha -\beta \right)$. This way will be lengthy and tedious.
“Complete step-by-step answer:”
We are given the following equation,
$\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1$………….(i)
Now by moving $\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$ from left hand side to right hand side of the equation (i) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }$………….(ii)
Now we are using the formula,
\[\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\] and $\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}$
And substituting in equation (ii) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\cos \alpha \sin \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(iii)
Now by taking LCM and further simplifying in right hand side of equation (iii) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \alpha \cos \left( \alpha -\beta \right)-\cos \alpha \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}$…………….(iv)
Now in the equation (iv) we will use the identity \[sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B\] and we will apply by replacing A by $\alpha $ and B by $\left( \alpha -\beta \right)$. We get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\sin \alpha \cos \left( \alpha -\beta \right)}$…………..(v)
On further simplification by multiplying $\sin \alpha $ to both the sides of equation (v) we get,
$\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\cos \left( \alpha -\beta \right)}$
Now by using cross multiplication we get,
${{\sin }^{2}}\gamma \cos \left( \alpha -\beta \right)=\sin \alpha \sin \beta $……………(vi)
Now we will use the identity $\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta $ in equation (vi), we get,
$si{{n}^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\sin \alpha \sin \beta $…………(vii)
Now dividing $\left( \sin \alpha \sin \beta {{\sin }^{2}}\gamma \right)$ throughout whole equation (vii) we get,
$\dfrac{{{\sin }^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)}{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }=\dfrac{\sin \alpha \sin \beta }{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }$
$\Rightarrow \left( \dfrac{\cos \alpha \cos \beta }{\sin \alpha \sin \beta }+1 \right)=\left( \dfrac{1}{{{\sin }^{2}}\gamma } \right)$
$\Rightarrow $$\cot \alpha cot\beta +1=cose{{c}^{2}}\gamma $……………. (viii)
Now let’s use the identity $\cos e{{c}^{2}}\gamma =1+{{\cot }^{2}}\gamma $ in equation (viii), we get
$1+\cot \alpha \cot \beta +1=1+{{\cot }^{2}}\gamma $
$\Rightarrow \cot \alpha \cot \beta ={{\cot }^{2}}\gamma $ ……………… (ix)
Now in equation (ix) we will use the identity
$\cot \theta =\dfrac{1}{\tan \theta }$ where$\theta $ can be replace by $\alpha ,\beta ,\gamma $ we get,
$\begin{align}
& \dfrac{1}{\tan \alpha }.\dfrac{1}{\tan \beta }=\dfrac{1}{{{\tan }^{2}}\gamma } \\
& \therefore \tan \alpha \tan \beta ={{\tan }^{2}}\gamma \\
\end{align}$
Hence proved
Note: In these types of problems students should generally convert all the ‘tan’ ratios to ‘sin’ and ‘cos’ ones and then simplify using the identities.
Students should also learn the identities by heart and should be well versed how to and where to use them to get the desired results. They should also be careful while working every single step so as to avoid miscalculations.
Another approach is to expand $\tan \left( \alpha -\beta \right)$. This way will be lengthy and tedious.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE