If $\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lambda = 0{\text{ and }}\alpha + \beta + \lambda = \pi ,$ then
$
\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = \\
{\text{a}}.{\text{ - 18}} \\
{\text{b}}{\text{. 0}} \\
{\text{c}}{\text{. 3}} \\
{\text{d}}{\text{. 9}} \\
$
Last updated date: 27th Mar 2023
•
Total views: 308.1k
•
Views today: 6.85k
Answer
308.1k+ views
Hint: Assume ${z_1} = \cos \alpha + i\sin \alpha ,{\text{ }}{{\text{z}}_2} = \cos \beta + i\sin \beta ,{\text{ }}{{\text{z}}_3} = \cos \lambda + i\sin \lambda $. Manipulate these terms to obtain the required expression, also use Euler’s Theorem that is write complex numbers in exponential terms.
Complete step-by-step answer:
Let,
$
{z_1} = \cos \alpha + i\sin \alpha ,{\text{ }}{{\text{z}}_2} = \cos \beta + i\sin \beta ,{\text{ }}{{\text{z}}_3} = \cos \lambda + i\sin \lambda \\
{z_1} = \cos \alpha + i\sin \alpha .........\left( 1 \right) \\
{\text{2}}{{\text{z}}_2} = 2\left( {\cos \beta + i\sin \beta } \right)............\left( 2 \right) \\
{\text{3}}{{\text{z}}_3} = 3\left( {\cos \lambda + i\sin \lambda } \right)...............\left( 3 \right) \\
$
Where $z$ is a complex number
Add these three equations
$
{z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = \cos \alpha + i\sin \alpha + 2\cos \beta + 2i\sin \beta + 3\cos \lambda + 3i\sin \lambda \\
{\text{ }} = \left( {\cos \alpha + 2\cos \beta + 3\cos \lambda } \right) + i\left( {\sin \alpha + 2\sin \beta + 3\sin \lambda } \right) \\
$
Now it is given that $\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lambda = 0$
$ \Rightarrow {z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = 0 + i0 = 0$
Now according to Euler’s Theorem $\cos \alpha + i\sin \alpha = {e^{i\alpha }}$
$
\Rightarrow {z_1} = {e^{i\alpha }} \\
\Rightarrow {{\text{z}}_2} = {e^{i\beta }} \\
\Rightarrow {{\text{z}}_3} = {e^{i\lambda }} \\
$
Now according to known fact if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$
$
\Rightarrow {\left( {{z_1}} \right)^3} + {\left( {2{{\text{z}}_2}} \right)^3} + {\left( {3{{\text{z}}_3}} \right)^3} = 3\left( {{z_1}} \right)\left( {2{{\text{z}}_2}} \right)\left( {3{{\text{z}}_3}} \right) \\
\Rightarrow {e^{3i\alpha }} + 8{e^{3i\beta }} + 27{e^{3i\lambda }} = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \cos 3\alpha + i\sin 3\alpha + 8\cos 3\beta + 8i\sin 3\beta + 27\cos 3\lambda + 27i\sin 3\lambda = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} \\
$
Now it is given that $\alpha + \beta + \lambda = \pi $
$
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} = 18{e^{i\pi }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) \\
$
Now, as we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) = 18\left( { - 1 + 0i} \right) = - 18$Now comparing real and imaginary terms
$
\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda = - 18, \\
\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0 \\
$
So, the value of $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0$
Hence, option b is correct.
Note: In such types of question always assume a complex number in the form of$\left( {z = \cos \theta + i\sin \theta } \right)$, then remember the standard known fact which is if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$, then simplify according to given conditions then compare real and imaginary parts we will get the required answer.
Complete step-by-step answer:
Let,
$
{z_1} = \cos \alpha + i\sin \alpha ,{\text{ }}{{\text{z}}_2} = \cos \beta + i\sin \beta ,{\text{ }}{{\text{z}}_3} = \cos \lambda + i\sin \lambda \\
{z_1} = \cos \alpha + i\sin \alpha .........\left( 1 \right) \\
{\text{2}}{{\text{z}}_2} = 2\left( {\cos \beta + i\sin \beta } \right)............\left( 2 \right) \\
{\text{3}}{{\text{z}}_3} = 3\left( {\cos \lambda + i\sin \lambda } \right)...............\left( 3 \right) \\
$
Where $z$ is a complex number
Add these three equations
$
{z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = \cos \alpha + i\sin \alpha + 2\cos \beta + 2i\sin \beta + 3\cos \lambda + 3i\sin \lambda \\
{\text{ }} = \left( {\cos \alpha + 2\cos \beta + 3\cos \lambda } \right) + i\left( {\sin \alpha + 2\sin \beta + 3\sin \lambda } \right) \\
$
Now it is given that $\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lambda = 0$
$ \Rightarrow {z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = 0 + i0 = 0$
Now according to Euler’s Theorem $\cos \alpha + i\sin \alpha = {e^{i\alpha }}$
$
\Rightarrow {z_1} = {e^{i\alpha }} \\
\Rightarrow {{\text{z}}_2} = {e^{i\beta }} \\
\Rightarrow {{\text{z}}_3} = {e^{i\lambda }} \\
$
Now according to known fact if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$
$
\Rightarrow {\left( {{z_1}} \right)^3} + {\left( {2{{\text{z}}_2}} \right)^3} + {\left( {3{{\text{z}}_3}} \right)^3} = 3\left( {{z_1}} \right)\left( {2{{\text{z}}_2}} \right)\left( {3{{\text{z}}_3}} \right) \\
\Rightarrow {e^{3i\alpha }} + 8{e^{3i\beta }} + 27{e^{3i\lambda }} = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \cos 3\alpha + i\sin 3\alpha + 8\cos 3\beta + 8i\sin 3\beta + 27\cos 3\lambda + 27i\sin 3\lambda = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} \\
$
Now it is given that $\alpha + \beta + \lambda = \pi $
$
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} = 18{e^{i\pi }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) \\
$
Now, as we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) = 18\left( { - 1 + 0i} \right) = - 18$Now comparing real and imaginary terms
$
\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda = - 18, \\
\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0 \\
$
So, the value of $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0$
Hence, option b is correct.
Note: In such types of question always assume a complex number in the form of$\left( {z = \cos \theta + i\sin \theta } \right)$, then remember the standard known fact which is if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$, then simplify according to given conditions then compare real and imaginary parts we will get the required answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
