
If $\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lambda = 0{\text{ and }}\alpha + \beta + \lambda = \pi ,$ then
$
\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = \\
{\text{a}}.{\text{ - 18}} \\
{\text{b}}{\text{. 0}} \\
{\text{c}}{\text{. 3}} \\
{\text{d}}{\text{. 9}} \\
$
Answer
621.3k+ views
Hint: Assume ${z_1} = \cos \alpha + i\sin \alpha ,{\text{ }}{{\text{z}}_2} = \cos \beta + i\sin \beta ,{\text{ }}{{\text{z}}_3} = \cos \lambda + i\sin \lambda $. Manipulate these terms to obtain the required expression, also use Euler’s Theorem that is write complex numbers in exponential terms.
Complete step-by-step answer:
Let,
$
{z_1} = \cos \alpha + i\sin \alpha ,{\text{ }}{{\text{z}}_2} = \cos \beta + i\sin \beta ,{\text{ }}{{\text{z}}_3} = \cos \lambda + i\sin \lambda \\
{z_1} = \cos \alpha + i\sin \alpha .........\left( 1 \right) \\
{\text{2}}{{\text{z}}_2} = 2\left( {\cos \beta + i\sin \beta } \right)............\left( 2 \right) \\
{\text{3}}{{\text{z}}_3} = 3\left( {\cos \lambda + i\sin \lambda } \right)...............\left( 3 \right) \\
$
Where $z$ is a complex number
Add these three equations
$
{z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = \cos \alpha + i\sin \alpha + 2\cos \beta + 2i\sin \beta + 3\cos \lambda + 3i\sin \lambda \\
{\text{ }} = \left( {\cos \alpha + 2\cos \beta + 3\cos \lambda } \right) + i\left( {\sin \alpha + 2\sin \beta + 3\sin \lambda } \right) \\
$
Now it is given that $\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lambda = 0$
$ \Rightarrow {z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = 0 + i0 = 0$
Now according to Euler’s Theorem $\cos \alpha + i\sin \alpha = {e^{i\alpha }}$
$
\Rightarrow {z_1} = {e^{i\alpha }} \\
\Rightarrow {{\text{z}}_2} = {e^{i\beta }} \\
\Rightarrow {{\text{z}}_3} = {e^{i\lambda }} \\
$
Now according to known fact if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$
$
\Rightarrow {\left( {{z_1}} \right)^3} + {\left( {2{{\text{z}}_2}} \right)^3} + {\left( {3{{\text{z}}_3}} \right)^3} = 3\left( {{z_1}} \right)\left( {2{{\text{z}}_2}} \right)\left( {3{{\text{z}}_3}} \right) \\
\Rightarrow {e^{3i\alpha }} + 8{e^{3i\beta }} + 27{e^{3i\lambda }} = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \cos 3\alpha + i\sin 3\alpha + 8\cos 3\beta + 8i\sin 3\beta + 27\cos 3\lambda + 27i\sin 3\lambda = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} \\
$
Now it is given that $\alpha + \beta + \lambda = \pi $
$
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} = 18{e^{i\pi }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) \\
$
Now, as we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) = 18\left( { - 1 + 0i} \right) = - 18$Now comparing real and imaginary terms
$
\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda = - 18, \\
\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0 \\
$
So, the value of $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0$
Hence, option b is correct.
Note: In such types of question always assume a complex number in the form of$\left( {z = \cos \theta + i\sin \theta } \right)$, then remember the standard known fact which is if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$, then simplify according to given conditions then compare real and imaginary parts we will get the required answer.
Complete step-by-step answer:
Let,
$
{z_1} = \cos \alpha + i\sin \alpha ,{\text{ }}{{\text{z}}_2} = \cos \beta + i\sin \beta ,{\text{ }}{{\text{z}}_3} = \cos \lambda + i\sin \lambda \\
{z_1} = \cos \alpha + i\sin \alpha .........\left( 1 \right) \\
{\text{2}}{{\text{z}}_2} = 2\left( {\cos \beta + i\sin \beta } \right)............\left( 2 \right) \\
{\text{3}}{{\text{z}}_3} = 3\left( {\cos \lambda + i\sin \lambda } \right)...............\left( 3 \right) \\
$
Where $z$ is a complex number
Add these three equations
$
{z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = \cos \alpha + i\sin \alpha + 2\cos \beta + 2i\sin \beta + 3\cos \lambda + 3i\sin \lambda \\
{\text{ }} = \left( {\cos \alpha + 2\cos \beta + 3\cos \lambda } \right) + i\left( {\sin \alpha + 2\sin \beta + 3\sin \lambda } \right) \\
$
Now it is given that $\cos \alpha + 2\cos \beta + 3\cos \lambda = 0,{\text{ }}\sin \alpha + 2\sin \beta + 3\sin \lambda = 0$
$ \Rightarrow {z_1} + 2{{\text{z}}_2} + 3{{\text{z}}_3} = 0 + i0 = 0$
Now according to Euler’s Theorem $\cos \alpha + i\sin \alpha = {e^{i\alpha }}$
$
\Rightarrow {z_1} = {e^{i\alpha }} \\
\Rightarrow {{\text{z}}_2} = {e^{i\beta }} \\
\Rightarrow {{\text{z}}_3} = {e^{i\lambda }} \\
$
Now according to known fact if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$
$
\Rightarrow {\left( {{z_1}} \right)^3} + {\left( {2{{\text{z}}_2}} \right)^3} + {\left( {3{{\text{z}}_3}} \right)^3} = 3\left( {{z_1}} \right)\left( {2{{\text{z}}_2}} \right)\left( {3{{\text{z}}_3}} \right) \\
\Rightarrow {e^{3i\alpha }} + 8{e^{3i\beta }} + 27{e^{3i\lambda }} = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \cos 3\alpha + i\sin 3\alpha + 8\cos 3\beta + 8i\sin 3\beta + 27\cos 3\lambda + 27i\sin 3\lambda = 18{e^{i\alpha }}{e^{i\beta }}{e^{i\lambda }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} \\
$
Now it is given that $\alpha + \beta + \lambda = \pi $
$
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18{e^{i\left( {\alpha + \beta + \lambda } \right)}} = 18{e^{i\pi }} \\
\Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) \\
$
Now, as we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow \left( {\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda } \right) + i\left( {\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda } \right) = 18\left( {\cos \pi + i\sin \pi } \right) = 18\left( { - 1 + 0i} \right) = - 18$Now comparing real and imaginary terms
$
\cos 3\alpha + 8\cos 3\beta + 27\cos 3\lambda = - 18, \\
\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0 \\
$
So, the value of $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\lambda = 0$
Hence, option b is correct.
Note: In such types of question always assume a complex number in the form of$\left( {z = \cos \theta + i\sin \theta } \right)$, then remember the standard known fact which is if $a + b + c = 0$, then ${a^3} + {b^3} + {c^3} = 3abc$, then simplify according to given conditions then compare real and imaginary parts we will get the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

