Answer
Verified
473.1k+ views
Hint: The three vectors given to us are coplanar means the determinant consists of the coefficients of the vector is zero. Another condition is given to us that is the absolute value of the vector c is given. Using these two conditions we can find out the required values.
Complete step-by-step answer:
A vector is a line segment that has a length and definite direction.
The vectors which are parallel to the same plane, or lie on the same plane are called coplanar vectors.
If any three vectors are linearly dependent then they are coplanar.
It is given in the question that the three vectors $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k},\overrightarrow{b}=4\hat{i}+3\hat{j}+4\hat{k},\overrightarrow{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are coplanar.
That means they are linearly dependent vectors.
Therefore the determinant of the coefficients of these three vectors will be equal to zero.
$\begin{align}
& \left| \begin{matrix}
1 & 1 & 1 \\
4 & 3 & 4 \\
1 & \alpha & \beta \\
\end{matrix} \right|=0 \\
& \Rightarrow 1\times \left( 3\beta -4\alpha \right)-1\times \left( 4\beta -4 \right)+1\times \left( 4\alpha -3 \right)=0 \\
& \Rightarrow 3\beta -4\alpha -4\beta +4+4\alpha -3=0 \\
& \Rightarrow -\beta +1=0 \\
& \Rightarrow \beta =1 \\
\end{align}$
So by using the first condition we got the value of $\beta $.
Now we have to find out the value of $\alpha $.
We have another condition that is given in the question.
Which is the absolute value of the third vector is given to us.
The absolute value or the modulus value is the measure of the magnitude of a vector. Geometrically, the absolute value represents the displacement from the origin and it is always nonnegative.
We have,
$\left| c \right|=\sqrt{3}$
By squaring both the sides we have,
$\begin{align}
& \Rightarrow {{\left| c \right|}^{2}}={{\left( \sqrt{3} \right)}^{2}} \\
& \Rightarrow {{\left( \sqrt{{{1}^{2}}+{{\alpha }^{2}}+{{\beta }^{2}}} \right)}^{2}}=3 \\
& \Rightarrow 1+{{\alpha }^{2}}+{{\beta }^{2}}=3 \\
& \Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}=3-1=2 \\
\end{align}$
Substitute the value of $\beta $,
$\begin{align}
& \Rightarrow {{\alpha }^{2}}+{{\left( 1 \right)}^{2}}=2 \\
& \Rightarrow {{\alpha }^{2}}=2-1=1 \\
& \Rightarrow \alpha =\pm 1 \\
\end{align}$
Therefore the values are $\alpha =\pm 1,\beta =1$.
Hence, option (c) is correct.
Note: Alternatively we can use the fact that three vectors are said to be coplanar if their scalar triple product is zero.
Therefore, $\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0$
We can get the value of $\beta $ from the above condition.
Complete step-by-step answer:
A vector is a line segment that has a length and definite direction.
The vectors which are parallel to the same plane, or lie on the same plane are called coplanar vectors.
If any three vectors are linearly dependent then they are coplanar.
It is given in the question that the three vectors $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k},\overrightarrow{b}=4\hat{i}+3\hat{j}+4\hat{k},\overrightarrow{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are coplanar.
That means they are linearly dependent vectors.
Therefore the determinant of the coefficients of these three vectors will be equal to zero.
$\begin{align}
& \left| \begin{matrix}
1 & 1 & 1 \\
4 & 3 & 4 \\
1 & \alpha & \beta \\
\end{matrix} \right|=0 \\
& \Rightarrow 1\times \left( 3\beta -4\alpha \right)-1\times \left( 4\beta -4 \right)+1\times \left( 4\alpha -3 \right)=0 \\
& \Rightarrow 3\beta -4\alpha -4\beta +4+4\alpha -3=0 \\
& \Rightarrow -\beta +1=0 \\
& \Rightarrow \beta =1 \\
\end{align}$
So by using the first condition we got the value of $\beta $.
Now we have to find out the value of $\alpha $.
We have another condition that is given in the question.
Which is the absolute value of the third vector is given to us.
The absolute value or the modulus value is the measure of the magnitude of a vector. Geometrically, the absolute value represents the displacement from the origin and it is always nonnegative.
We have,
$\left| c \right|=\sqrt{3}$
By squaring both the sides we have,
$\begin{align}
& \Rightarrow {{\left| c \right|}^{2}}={{\left( \sqrt{3} \right)}^{2}} \\
& \Rightarrow {{\left( \sqrt{{{1}^{2}}+{{\alpha }^{2}}+{{\beta }^{2}}} \right)}^{2}}=3 \\
& \Rightarrow 1+{{\alpha }^{2}}+{{\beta }^{2}}=3 \\
& \Rightarrow {{\alpha }^{2}}+{{\beta }^{2}}=3-1=2 \\
\end{align}$
Substitute the value of $\beta $,
$\begin{align}
& \Rightarrow {{\alpha }^{2}}+{{\left( 1 \right)}^{2}}=2 \\
& \Rightarrow {{\alpha }^{2}}=2-1=1 \\
& \Rightarrow \alpha =\pm 1 \\
\end{align}$
Therefore the values are $\alpha =\pm 1,\beta =1$.
Hence, option (c) is correct.
Note: Alternatively we can use the fact that three vectors are said to be coplanar if their scalar triple product is zero.
Therefore, $\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=0$
We can get the value of $\beta $ from the above condition.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE