
If by rotation of axes, the expression $a{x^2} + 2hxy + b{y^2}$ be changed to $a'x{'^2} + 2h'x'y' + b'y{'^2}$. Then prove that $a + b = a' + b'$ and $ab - {h^2} = a'b' - h{'^2}$.
Answer
564.9k+ views
Hint: Let \[P\left( {x,y} \right)\] be a point in the \[xy\] plane. If the axes are rotated by an angle \[\theta \] in the anticlockwise direction about the origin, then the coordinates of \[P\] with respect to the rotated axes will be given by the following relations:
\[x = x'\cos \theta - y'\sin \theta \]
\[y = x'\sin \theta + y'\cos \theta \]
Here, \[\left( {x',y'} \right)\]denote the new coordinates of \[P\], here we make use of some trigonometric identities also for further simplification.
Complete answer:
Given the expression $a{x^2} + 2hxy + b{y^2}$ is changed to $a'x{'^2} + 2h'x'y' + b'y{'^2}$ when axes is rotated.
Now using rotation of axes method i.e., when the axes is rotated through an angle $\theta $ then we get,
$x = x'\cos \theta - y'\sin \theta $ and $y = x'\sin \theta + y'\cos \theta $
The new axis of x being inclined at an angle $\theta $ to the old axis, we have to substitute $x = x'\cos \theta - y'\sin \theta $ and $y = x'\sin \theta + y'\cos \theta $ values in the expression $a{x^2} + 2hxy + b{y^2}$ respectively.
Now given expression is $a{x^2} + 2hxy + b{y^2}$
Substituting $x$ and $y$ values in the expression we get,
$ \Rightarrow a{\left( {x'\cos \theta - y'\sin \theta } \right)^2} + 2h\left( {x'\cos \theta - y'\sin \theta } \right)\left( {x'\sin \theta + y'\cos \theta } \right) + b{\left( {x'\sin \theta + y'\cos \theta } \right)^2}$
Now applying square and multiplying we get,
\[a(x{'^2}\cos \theta + y{'^2}\sin \theta - 2x'y'\sin \theta \cos \theta ) + 2h(x{'^2}\sin \theta \cos \theta + x'y'{\cos ^2}\theta - x'y'{\sin ^2}\theta - y{'^2}\sin \theta \cos \theta ) + b(x{'^2}{\sin ^2}\theta + y{'^2}{\cos ^2}\theta + 2x'y'\sin \theta \cos \theta )\]
Now simplifying we get,
\[ax{'^2}\cos \theta + ay{'^2}\sin \theta - 2ax'y'\sin \theta \cos \theta + 2hx{'^2}\sin \theta \cos \theta + hx'y'{\cos ^2}\theta - hx'y'{\sin ^2}\theta - hy{'^2}\sin \theta \cos \theta ) + bx{'^2}{\sin ^2}\theta + by{'^2}{\cos ^2}\theta + 2bx'y'\sin \theta \cos \theta \]
Now transforming this expression the form of $a'x{'^2} + 2h'x'y' + b'y’{^2}$, we get,
\[x{'^2}(a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta ) + 2x'y[ - a\cos \theta \sin \theta + h({\cos ^2}\theta - {\sin ^2}\theta ) + b\sin \theta \cos \theta ] + y{'^2}(a{\sin ^2}\theta - 2h\cos \theta \sin \theta + b{\cos ^2}\theta )\]
Now comparing this expression with the expression $a'x{'^2} + 2h'x'y' + b'y{'^2}$, we get,
\[a' = \left( {a{{\cos }^2}\theta + 2h\cos \theta \sin \theta + b{{\sin }^2}\theta } \right) - - - - (1)\]
\[b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)\] and,\[h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)\]
Now adding the equations (1) and (2) we get,
\[ \Rightarrow a' + {b'} = a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta + a{\sin ^2}\theta - 2h\cos \theta \sin \theta + b{\cos ^2}\theta \]
Now adding the like terms we get,
\[ \Rightarrow a' + {b'} = \left( {a{{\cos }^2}\theta + a{{\sin }^2}\theta } \right) + 2h\cos \theta \sin \theta + \left( {b{{\sin }^2}\theta + b{{\cos }^2}\theta } \right) - 2h\cos \theta \sin \theta \]
Now subtracting the like terms and taking common terms we get,
\[ \Rightarrow a' + {b'} = a\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) + b\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\]
Now using the trigonometric identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] and substituting its value in the above equation we get,
\[ \Rightarrow a' + {b'} = a\left( 1 \right) + b\left( 1 \right)\]
Now we get the required result,
\[ \Rightarrow a' + {b'} = a + b\],
Hence proved the first part.
Now for the second part, we have to prove $ab - {h^2} = a'b' - h{'^2}$for this take the equations (1) , (2) and (3) i.e.,
\[b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)\] and,\[h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)\]
Now take the equation (1),
\[a' = a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta \]
Now multiplying and dividing the equation with 2 we get,
\[a' = \dfrac{1}{2}\left( {2a{{\cos }^2}\theta + 4h\cos \theta \sin \theta + 2b{{\sin }^2}\theta } \right)\]
Now separating two terms we get,
\[a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a{{\cos }^2}\theta + 4h\cos \theta \sin \theta + b{{\sin }^2}\theta + b{{\sin }^2}\theta } \right]\]
Now using trigonometric identities convert\[\cos \]into\[\sin \]and convert\[\sin \]into\[\cos \]and using \[\sin 2\theta = 2\sin \theta \cos \theta \]we get,
\[a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a\left( {1 - {{\sin }^2}\theta } \right) + 2h\sin 2\theta + b{{\sin }^2}\theta + b\left( {1 - {{\cos }^2}\theta } \right)} \right]\],
Now expanding the terms in the brackets we get,
\[a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a - a{{\sin }^2}\theta + 2h\sin 2\theta + b{{\sin }^2}\theta + b - b{{\cos }^2}\theta } \right]\],
Now taking the like terms together we get,
\[a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + {{\cos }^2}\theta \left( {a - b} \right) - {{\sin }^2}\theta \left( {a - b} \right) + 2h\sin 2\theta } \right]\]
Again taking the like terms we get,
\[a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + 2h\sin 2\theta } \right]\]
Now using again trigonometric identity we get,
\[a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right]\].
Now taking the equation (2) we get,
\[b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)\]
Now multiplying and dividing the equation with 2 we get,
\[b' = \dfrac{1}{2}\left( {2a{{\sin }^2}\theta - 4h\cos \theta \sin \theta + 2b{{\cos }^2}\theta } \right)\]
Now separating two terms we get,
\[b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a{{\sin }^2}\theta - 4h\cos \theta \sin \theta + b{{\cos }^2}\theta + b{{\cos }^2}\theta } \right]\]
Now using trigonometric identities convert\[\cos \]into\[\sin \]and convert\[\sin \]into\[\cos \]and using \[\sin 2\theta = 2\sin \theta \cos \theta \]we get,
\[b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a\left( {1 - {{\cos }^2}\theta } \right) - 2h\sin 2\theta + b{{\cos }^2}\theta + b\left( {1 - {{\sin }^2}\theta } \right)} \right]\],
Now expanding the terms in the brackets we get,
\[b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a - a{{\cos }^2}\theta - 2h\sin 2\theta + b{{\cos }^2}\theta + b - b{{\sin }^2}\theta } \right]\],
Now taking the like terms together we get,
\[b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + {{\sin }^2}\theta \left( {a - b} \right) - {{\cos }^2}\theta \left( {a - b} \right) - 2h\sin 2\theta } \right]\]
Again taking the like terms we get,
\[b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) - 2h\sin 2\theta } \right]\]
Now using again trigonometric identity we get,
\[b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\cos 2\theta - 2h\sin 2\theta } \right]\].
Now taking the equation (3) i.e.,
\[h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)\]
Now multiplying and dividing the equation with 2 we get,
\[h' = \dfrac{1}{2}\left[ { - 2a\cos \theta \sin \theta + 2h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + 2b\sin \theta \cos \theta } \right]\]
Now taking the like terms we get,
\[h' = \dfrac{1}{2}\left[ { - 2\cos \theta \sin \theta \left( {a - b} \right) + 2h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)} \right]\]
Now using the trigonometric identities we get,
\[h' = \dfrac{1}{2}\left[ { - \sin 2\theta \left( {a - b} \right) + 2h\cos 2\theta } \right]\]
Now we have to prove $ab - {h^2} = a'b' - h’{^2}$ now multiplying and subtracting by substituting the values we got, we get,
\[\left( {\dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right]} \right)\left( {\dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\cos 2\theta - 2h\sin 2\theta } \right]} \right)- {\left( {\dfrac{1}{2}\left[ { - \sin 2\theta \left( {a - b} \right) + 2h\cos 2\theta } \right]} \right)^2}\]
Now multiplying and simplifying we get,
\[\left( {\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {\left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right)}^2}} \right]} \right) - \left( {\dfrac{1}{4}\left[ {{{\sin }^2}2\theta {{\left( {a - b} \right)}^2} + 4{h^2}{{\cos }^2}2\theta - 4h\cos 2\theta \left( {a - b} \right)\sin 2\theta } \right]} \right)\]
Now eliminating the terms and grouping the like terms and simplifying we get,
\[\therefore a'b' - h’{^2} = ab - {h^2}\] \[\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2}\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) - 4{h^2}\left( {{{\cos }^2}\theta + {{\sin }^2}2\theta } \right)} \right]\]
Now using the trigonometric identity we get,
\[\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} - 4{h^2}} \right]\],
Now again using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] and simplifying we get,
\[\dfrac{1}{4}\left[ {{a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4{h^2}} \right]\]
Now eliminating the terms we get,
\[\dfrac{1}{4}\left[ {4ab - 4{h^2}} \right]\]
Now taking 4 common we get,
\[ab - {h^2}\],
\[\therefore a'b' - h{'^2} = ab - {h^2}\],
Hence proved.
If by rotation of axes, the expression $a{x^2} + 2hxy + b{y^2}$ be changed to $a'x’{^2} + 2h'x'y' + b'y’{^2}$, then $a + b = a' + b'$ and $ab - {h^2} = a'b' - h{'^2}$.
Hence proved.
Note:
In these type of questions we use the rotation of axes method i.e., when the axes is rotated through an angle$\theta $then we get,$x = x'\cos \theta - y'\sin \theta $and $y = x'\sin \theta + y'\cos \theta $,the new axis of x being inclined at an angle$\theta $ to the old axis, we have to substitute $x = x'\cos \theta - y'\sin \theta $ and $y = x'\sin \theta + y'\cos \theta $ values., and here using trigonometric identities is also a tricky part as there are many trigonometric identities students must have a clear idea which identity to use where.
Some of the identities and formulas are given below:
${\sin ^2}x + {\cos ^2}x = 1$,
${\tan ^2}x + 1 = {\sec ^2}x$,
$1 + {\cot ^2}x = {\csc ^2}x$
$2\sin x\cos x = \sin 2x$,
${\cos ^2}x - {\sin ^2}x = \cos 2x$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$.
\[x = x'\cos \theta - y'\sin \theta \]
\[y = x'\sin \theta + y'\cos \theta \]
Here, \[\left( {x',y'} \right)\]denote the new coordinates of \[P\], here we make use of some trigonometric identities also for further simplification.
Complete answer:
Given the expression $a{x^2} + 2hxy + b{y^2}$ is changed to $a'x{'^2} + 2h'x'y' + b'y{'^2}$ when axes is rotated.
Now using rotation of axes method i.e., when the axes is rotated through an angle $\theta $ then we get,
$x = x'\cos \theta - y'\sin \theta $ and $y = x'\sin \theta + y'\cos \theta $
The new axis of x being inclined at an angle $\theta $ to the old axis, we have to substitute $x = x'\cos \theta - y'\sin \theta $ and $y = x'\sin \theta + y'\cos \theta $ values in the expression $a{x^2} + 2hxy + b{y^2}$ respectively.
Now given expression is $a{x^2} + 2hxy + b{y^2}$
Substituting $x$ and $y$ values in the expression we get,
$ \Rightarrow a{\left( {x'\cos \theta - y'\sin \theta } \right)^2} + 2h\left( {x'\cos \theta - y'\sin \theta } \right)\left( {x'\sin \theta + y'\cos \theta } \right) + b{\left( {x'\sin \theta + y'\cos \theta } \right)^2}$
Now applying square and multiplying we get,
\[a(x{'^2}\cos \theta + y{'^2}\sin \theta - 2x'y'\sin \theta \cos \theta ) + 2h(x{'^2}\sin \theta \cos \theta + x'y'{\cos ^2}\theta - x'y'{\sin ^2}\theta - y{'^2}\sin \theta \cos \theta ) + b(x{'^2}{\sin ^2}\theta + y{'^2}{\cos ^2}\theta + 2x'y'\sin \theta \cos \theta )\]
Now simplifying we get,
\[ax{'^2}\cos \theta + ay{'^2}\sin \theta - 2ax'y'\sin \theta \cos \theta + 2hx{'^2}\sin \theta \cos \theta + hx'y'{\cos ^2}\theta - hx'y'{\sin ^2}\theta - hy{'^2}\sin \theta \cos \theta ) + bx{'^2}{\sin ^2}\theta + by{'^2}{\cos ^2}\theta + 2bx'y'\sin \theta \cos \theta \]
Now transforming this expression the form of $a'x{'^2} + 2h'x'y' + b'y’{^2}$, we get,
\[x{'^2}(a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta ) + 2x'y[ - a\cos \theta \sin \theta + h({\cos ^2}\theta - {\sin ^2}\theta ) + b\sin \theta \cos \theta ] + y{'^2}(a{\sin ^2}\theta - 2h\cos \theta \sin \theta + b{\cos ^2}\theta )\]
Now comparing this expression with the expression $a'x{'^2} + 2h'x'y' + b'y{'^2}$, we get,
\[a' = \left( {a{{\cos }^2}\theta + 2h\cos \theta \sin \theta + b{{\sin }^2}\theta } \right) - - - - (1)\]
\[b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)\] and,\[h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)\]
Now adding the equations (1) and (2) we get,
\[ \Rightarrow a' + {b'} = a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta + a{\sin ^2}\theta - 2h\cos \theta \sin \theta + b{\cos ^2}\theta \]
Now adding the like terms we get,
\[ \Rightarrow a' + {b'} = \left( {a{{\cos }^2}\theta + a{{\sin }^2}\theta } \right) + 2h\cos \theta \sin \theta + \left( {b{{\sin }^2}\theta + b{{\cos }^2}\theta } \right) - 2h\cos \theta \sin \theta \]
Now subtracting the like terms and taking common terms we get,
\[ \Rightarrow a' + {b'} = a\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) + b\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\]
Now using the trigonometric identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] and substituting its value in the above equation we get,
\[ \Rightarrow a' + {b'} = a\left( 1 \right) + b\left( 1 \right)\]
Now we get the required result,
\[ \Rightarrow a' + {b'} = a + b\],
Hence proved the first part.
Now for the second part, we have to prove $ab - {h^2} = a'b' - h{'^2}$for this take the equations (1) , (2) and (3) i.e.,
\[b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)\] and,\[h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)\]
Now take the equation (1),
\[a' = a{\cos ^2}\theta + 2h\cos \theta \sin \theta + b{\sin ^2}\theta \]
Now multiplying and dividing the equation with 2 we get,
\[a' = \dfrac{1}{2}\left( {2a{{\cos }^2}\theta + 4h\cos \theta \sin \theta + 2b{{\sin }^2}\theta } \right)\]
Now separating two terms we get,
\[a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a{{\cos }^2}\theta + 4h\cos \theta \sin \theta + b{{\sin }^2}\theta + b{{\sin }^2}\theta } \right]\]
Now using trigonometric identities convert\[\cos \]into\[\sin \]and convert\[\sin \]into\[\cos \]and using \[\sin 2\theta = 2\sin \theta \cos \theta \]we get,
\[a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a\left( {1 - {{\sin }^2}\theta } \right) + 2h\sin 2\theta + b{{\sin }^2}\theta + b\left( {1 - {{\cos }^2}\theta } \right)} \right]\],
Now expanding the terms in the brackets we get,
\[a' = \dfrac{1}{2}\left[ {a{{\cos }^2}\theta + a - a{{\sin }^2}\theta + 2h\sin 2\theta + b{{\sin }^2}\theta + b - b{{\cos }^2}\theta } \right]\],
Now taking the like terms together we get,
\[a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + {{\cos }^2}\theta \left( {a - b} \right) - {{\sin }^2}\theta \left( {a - b} \right) + 2h\sin 2\theta } \right]\]
Again taking the like terms we get,
\[a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + 2h\sin 2\theta } \right]\]
Now using again trigonometric identity we get,
\[a' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right]\].
Now taking the equation (2) we get,
\[b' = \left( {a{{\sin }^2}\theta - 2h\cos \theta \sin \theta + b{{\cos }^2}\theta } \right) - - - - - (2)\]
Now multiplying and dividing the equation with 2 we get,
\[b' = \dfrac{1}{2}\left( {2a{{\sin }^2}\theta - 4h\cos \theta \sin \theta + 2b{{\cos }^2}\theta } \right)\]
Now separating two terms we get,
\[b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a{{\sin }^2}\theta - 4h\cos \theta \sin \theta + b{{\cos }^2}\theta + b{{\cos }^2}\theta } \right]\]
Now using trigonometric identities convert\[\cos \]into\[\sin \]and convert\[\sin \]into\[\cos \]and using \[\sin 2\theta = 2\sin \theta \cos \theta \]we get,
\[b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a\left( {1 - {{\cos }^2}\theta } \right) - 2h\sin 2\theta + b{{\cos }^2}\theta + b\left( {1 - {{\sin }^2}\theta } \right)} \right]\],
Now expanding the terms in the brackets we get,
\[b' = \dfrac{1}{2}\left[ {a{{\sin }^2}\theta + a - a{{\cos }^2}\theta - 2h\sin 2\theta + b{{\cos }^2}\theta + b - b{{\sin }^2}\theta } \right]\],
Now taking the like terms together we get,
\[b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) + {{\sin }^2}\theta \left( {a - b} \right) - {{\cos }^2}\theta \left( {a - b} \right) - 2h\sin 2\theta } \right]\]
Again taking the like terms we get,
\[b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) - 2h\sin 2\theta } \right]\]
Now using again trigonometric identity we get,
\[b' = \dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\cos 2\theta - 2h\sin 2\theta } \right]\].
Now taking the equation (3) i.e.,
\[h' = \left[ { - a\cos \theta \sin \theta + h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + b\sin \theta \cos \theta } \right] - - - - (3)\]
Now multiplying and dividing the equation with 2 we get,
\[h' = \dfrac{1}{2}\left[ { - 2a\cos \theta \sin \theta + 2h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) + 2b\sin \theta \cos \theta } \right]\]
Now taking the like terms we get,
\[h' = \dfrac{1}{2}\left[ { - 2\cos \theta \sin \theta \left( {a - b} \right) + 2h\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)} \right]\]
Now using the trigonometric identities we get,
\[h' = \dfrac{1}{2}\left[ { - \sin 2\theta \left( {a - b} \right) + 2h\cos 2\theta } \right]\]
Now we have to prove $ab - {h^2} = a'b' - h’{^2}$ now multiplying and subtracting by substituting the values we got, we get,
\[\left( {\dfrac{1}{2}\left[ {\left( {a + b} \right) + \left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right]} \right)\left( {\dfrac{1}{2}\left[ {\left( {a + b} \right) - \left( {a - b} \right)\cos 2\theta - 2h\sin 2\theta } \right]} \right)- {\left( {\dfrac{1}{2}\left[ { - \sin 2\theta \left( {a - b} \right) + 2h\cos 2\theta } \right]} \right)^2}\]
Now multiplying and simplifying we get,
\[\left( {\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {\left( {a - b} \right)\cos 2\theta + 2h\sin 2\theta } \right)}^2}} \right]} \right) - \left( {\dfrac{1}{4}\left[ {{{\sin }^2}2\theta {{\left( {a - b} \right)}^2} + 4{h^2}{{\cos }^2}2\theta - 4h\cos 2\theta \left( {a - b} \right)\sin 2\theta } \right]} \right)\]
Now eliminating the terms and grouping the like terms and simplifying we get,
\[\therefore a'b' - h’{^2} = ab - {h^2}\] \[\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2}\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) - 4{h^2}\left( {{{\cos }^2}\theta + {{\sin }^2}2\theta } \right)} \right]\]
Now using the trigonometric identity we get,
\[\dfrac{1}{4}\left[ {{{\left( {a + b} \right)}^2} - {{\left( {a - b} \right)}^2} - 4{h^2}} \right]\],
Now again using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] and simplifying we get,
\[\dfrac{1}{4}\left[ {{a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4{h^2}} \right]\]
Now eliminating the terms we get,
\[\dfrac{1}{4}\left[ {4ab - 4{h^2}} \right]\]
Now taking 4 common we get,
\[ab - {h^2}\],
\[\therefore a'b' - h{'^2} = ab - {h^2}\],
Hence proved.
If by rotation of axes, the expression $a{x^2} + 2hxy + b{y^2}$ be changed to $a'x’{^2} + 2h'x'y' + b'y’{^2}$, then $a + b = a' + b'$ and $ab - {h^2} = a'b' - h{'^2}$.
Hence proved.
Note:
In these type of questions we use the rotation of axes method i.e., when the axes is rotated through an angle$\theta $then we get,$x = x'\cos \theta - y'\sin \theta $and $y = x'\sin \theta + y'\cos \theta $,the new axis of x being inclined at an angle$\theta $ to the old axis, we have to substitute $x = x'\cos \theta - y'\sin \theta $ and $y = x'\sin \theta + y'\cos \theta $ values., and here using trigonometric identities is also a tricky part as there are many trigonometric identities students must have a clear idea which identity to use where.
Some of the identities and formulas are given below:
${\sin ^2}x + {\cos ^2}x = 1$,
${\tan ^2}x + 1 = {\sec ^2}x$,
$1 + {\cot ^2}x = {\csc ^2}x$
$2\sin x\cos x = \sin 2x$,
${\cos ^2}x - {\sin ^2}x = \cos 2x$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

