Answer

Verified

410.4k+ views

Hint: Use the formula for union of two sets that is \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]. Now, since \[A\subset B\], therefore put \[n\left( A\cap B \right)=n\left( A \right)\], then use the given information that is \[n\left( A \right)=5\] and \[n\left( B \right)=7\].

Here, we are given two sets A and B such that \[A\subset B\], \[n\left( A \right)=5\] and \[n\left( B \right)=7\]. We have to find the value of \[n\left( A\cup B \right)\].

Before proceeding with the question, we must know some of the terminologies related to sets.

First of all, a ‘set’ is a collection of well-defined and distinct objects. The most basic property of a set is that it has elements. The number of elements of a set, say A is shown by \[n\left( A \right)\].

Here, in the question we have \[n\left( A \right)=5\] and \[n\left( B \right)=7\], that means the number of elements in set A is 5, while the number of elements in set B is 7.

Now, a ‘subset’ is a set which is contained in another set. We can also put it as, if we have a set P which is a subset of another set Q, then P is contained in Q as all the elements of set P are elements of Q. This relationship is shown by \[P\subset Q\].

We can show it diagrammatically as,

Here, \[P\subset Q\], that means P is contained in Q as P is a subset of Q.

In question, we are given that \[A\subset B\], that means that A is a subset of B or A is contained in B. We can show them as

Now, union of two sets say P and Q is the set of elements which are in P, in Q or both P and Q. For example, if P = {1, 3, 5, 7} and Q = {1, 2, 4, 6, 7}, then union of P and Q which is shown as \[P\cup Q=\left\{ 1,2,3,4,5,6,7 \right\}\]

Diagrammatically, the shaded portion is \[P\cup Q\] which is as follows

The formula for \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\].

Here, \[P\cap Q\] is the area common to both P and Q.

Now, in the given question, we have to find \[n\left( A\cup B \right)\], that is, the number of elements in A union B.

We can show \[A\cup B\] by a shaded portion which is as follows.

Here, \[A\subset B\] and \[n\left( A \right)=5\] and \[n\left( B \right)=7\].

Here, we can see that the portion common to the set A and B that is \[\left( A\cap B \right)\] is nothing but set A. Therefore, here we have \[n\left( A\cap B \right)=n\left( A \right)=5\].

As we know that \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\], therefore to get \[n\left( A\cup B \right)\], we will put A and B in place of P and Q respectively, we will get

\[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]

Since, we have found that \[n\left( A\cap B \right)=n\left( A \right)=5\].

Therefore we get, \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A \right)\]

By putting the values of n (A) and n (B), we get,

\[n\left( A\cup B \right)=5+7-5\]

\[n\left( A\cup B \right)=7\]

Therefore, we get \[n\left( A\cup B \right)=7\]

Hence, option (b) is correct.

Note: Students must note that whenever \[A\subset B\], that is A is subset of B, then \[n\left( A\cup B \right)\], that is the number of elements in A union B is equal to number of elements in set B that is, \[n\left( A\cup B \right)=n\left( B \right)\] when \[A\subset B\]. Also, some students make this mistake of writing \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)\] which is wrong. They must remember to subtract \[n\left( A\cap B \right)\] as well. Hence, \[n\left( A\cap B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\].

Here, we are given two sets A and B such that \[A\subset B\], \[n\left( A \right)=5\] and \[n\left( B \right)=7\]. We have to find the value of \[n\left( A\cup B \right)\].

Before proceeding with the question, we must know some of the terminologies related to sets.

First of all, a ‘set’ is a collection of well-defined and distinct objects. The most basic property of a set is that it has elements. The number of elements of a set, say A is shown by \[n\left( A \right)\].

Here, in the question we have \[n\left( A \right)=5\] and \[n\left( B \right)=7\], that means the number of elements in set A is 5, while the number of elements in set B is 7.

Now, a ‘subset’ is a set which is contained in another set. We can also put it as, if we have a set P which is a subset of another set Q, then P is contained in Q as all the elements of set P are elements of Q. This relationship is shown by \[P\subset Q\].

We can show it diagrammatically as,

Here, \[P\subset Q\], that means P is contained in Q as P is a subset of Q.

In question, we are given that \[A\subset B\], that means that A is a subset of B or A is contained in B. We can show them as

Now, union of two sets say P and Q is the set of elements which are in P, in Q or both P and Q. For example, if P = {1, 3, 5, 7} and Q = {1, 2, 4, 6, 7}, then union of P and Q which is shown as \[P\cup Q=\left\{ 1,2,3,4,5,6,7 \right\}\]

Diagrammatically, the shaded portion is \[P\cup Q\] which is as follows

The formula for \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\].

Here, \[P\cap Q\] is the area common to both P and Q.

Now, in the given question, we have to find \[n\left( A\cup B \right)\], that is, the number of elements in A union B.

We can show \[A\cup B\] by a shaded portion which is as follows.

Here, \[A\subset B\] and \[n\left( A \right)=5\] and \[n\left( B \right)=7\].

Here, we can see that the portion common to the set A and B that is \[\left( A\cap B \right)\] is nothing but set A. Therefore, here we have \[n\left( A\cap B \right)=n\left( A \right)=5\].

As we know that \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\], therefore to get \[n\left( A\cup B \right)\], we will put A and B in place of P and Q respectively, we will get

\[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]

Since, we have found that \[n\left( A\cap B \right)=n\left( A \right)=5\].

Therefore we get, \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A \right)\]

By putting the values of n (A) and n (B), we get,

\[n\left( A\cup B \right)=5+7-5\]

\[n\left( A\cup B \right)=7\]

Therefore, we get \[n\left( A\cup B \right)=7\]

Hence, option (b) is correct.

Note: Students must note that whenever \[A\subset B\], that is A is subset of B, then \[n\left( A\cup B \right)\], that is the number of elements in A union B is equal to number of elements in set B that is, \[n\left( A\cup B \right)=n\left( B \right)\] when \[A\subset B\]. Also, some students make this mistake of writing \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)\] which is wrong. They must remember to subtract \[n\left( A\cap B \right)\] as well. Hence, \[n\left( A\cap B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\].

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Write the difference between soap and detergent class 10 chemistry CBSE

Give 10 examples of unisexual and bisexual flowers

Differentiate between calcination and roasting class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

a Why did Mendel choose pea plants for his experiments class 10 biology CBSE