Answer

Verified

457.8k+ views

Hint: Use the formula for union of two sets that is \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]. Now, since \[A\subset B\], therefore put \[n\left( A\cap B \right)=n\left( A \right)\], then use the given information that is \[n\left( A \right)=5\] and \[n\left( B \right)=7\].

Here, we are given two sets A and B such that \[A\subset B\], \[n\left( A \right)=5\] and \[n\left( B \right)=7\]. We have to find the value of \[n\left( A\cup B \right)\].

Before proceeding with the question, we must know some of the terminologies related to sets.

First of all, a ‘set’ is a collection of well-defined and distinct objects. The most basic property of a set is that it has elements. The number of elements of a set, say A is shown by \[n\left( A \right)\].

Here, in the question we have \[n\left( A \right)=5\] and \[n\left( B \right)=7\], that means the number of elements in set A is 5, while the number of elements in set B is 7.

Now, a ‘subset’ is a set which is contained in another set. We can also put it as, if we have a set P which is a subset of another set Q, then P is contained in Q as all the elements of set P are elements of Q. This relationship is shown by \[P\subset Q\].

We can show it diagrammatically as,

Here, \[P\subset Q\], that means P is contained in Q as P is a subset of Q.

In question, we are given that \[A\subset B\], that means that A is a subset of B or A is contained in B. We can show them as

Now, union of two sets say P and Q is the set of elements which are in P, in Q or both P and Q. For example, if P = {1, 3, 5, 7} and Q = {1, 2, 4, 6, 7}, then union of P and Q which is shown as \[P\cup Q=\left\{ 1,2,3,4,5,6,7 \right\}\]

Diagrammatically, the shaded portion is \[P\cup Q\] which is as follows

The formula for \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\].

Here, \[P\cap Q\] is the area common to both P and Q.

Now, in the given question, we have to find \[n\left( A\cup B \right)\], that is, the number of elements in A union B.

We can show \[A\cup B\] by a shaded portion which is as follows.

Here, \[A\subset B\] and \[n\left( A \right)=5\] and \[n\left( B \right)=7\].

Here, we can see that the portion common to the set A and B that is \[\left( A\cap B \right)\] is nothing but set A. Therefore, here we have \[n\left( A\cap B \right)=n\left( A \right)=5\].

As we know that \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\], therefore to get \[n\left( A\cup B \right)\], we will put A and B in place of P and Q respectively, we will get

\[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]

Since, we have found that \[n\left( A\cap B \right)=n\left( A \right)=5\].

Therefore we get, \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A \right)\]

By putting the values of n (A) and n (B), we get,

\[n\left( A\cup B \right)=5+7-5\]

\[n\left( A\cup B \right)=7\]

Therefore, we get \[n\left( A\cup B \right)=7\]

Hence, option (b) is correct.

Note: Students must note that whenever \[A\subset B\], that is A is subset of B, then \[n\left( A\cup B \right)\], that is the number of elements in A union B is equal to number of elements in set B that is, \[n\left( A\cup B \right)=n\left( B \right)\] when \[A\subset B\]. Also, some students make this mistake of writing \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)\] which is wrong. They must remember to subtract \[n\left( A\cap B \right)\] as well. Hence, \[n\left( A\cap B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\].

Here, we are given two sets A and B such that \[A\subset B\], \[n\left( A \right)=5\] and \[n\left( B \right)=7\]. We have to find the value of \[n\left( A\cup B \right)\].

Before proceeding with the question, we must know some of the terminologies related to sets.

First of all, a ‘set’ is a collection of well-defined and distinct objects. The most basic property of a set is that it has elements. The number of elements of a set, say A is shown by \[n\left( A \right)\].

Here, in the question we have \[n\left( A \right)=5\] and \[n\left( B \right)=7\], that means the number of elements in set A is 5, while the number of elements in set B is 7.

Now, a ‘subset’ is a set which is contained in another set. We can also put it as, if we have a set P which is a subset of another set Q, then P is contained in Q as all the elements of set P are elements of Q. This relationship is shown by \[P\subset Q\].

We can show it diagrammatically as,

Here, \[P\subset Q\], that means P is contained in Q as P is a subset of Q.

In question, we are given that \[A\subset B\], that means that A is a subset of B or A is contained in B. We can show them as

Now, union of two sets say P and Q is the set of elements which are in P, in Q or both P and Q. For example, if P = {1, 3, 5, 7} and Q = {1, 2, 4, 6, 7}, then union of P and Q which is shown as \[P\cup Q=\left\{ 1,2,3,4,5,6,7 \right\}\]

Diagrammatically, the shaded portion is \[P\cup Q\] which is as follows

The formula for \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\].

Here, \[P\cap Q\] is the area common to both P and Q.

Now, in the given question, we have to find \[n\left( A\cup B \right)\], that is, the number of elements in A union B.

We can show \[A\cup B\] by a shaded portion which is as follows.

Here, \[A\subset B\] and \[n\left( A \right)=5\] and \[n\left( B \right)=7\].

Here, we can see that the portion common to the set A and B that is \[\left( A\cap B \right)\] is nothing but set A. Therefore, here we have \[n\left( A\cap B \right)=n\left( A \right)=5\].

As we know that \[n\left( P\cup Q \right)=n\left( P \right)+n\left( Q \right)-n\left( P\cap Q \right)\], therefore to get \[n\left( A\cup B \right)\], we will put A and B in place of P and Q respectively, we will get

\[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\]

Since, we have found that \[n\left( A\cap B \right)=n\left( A \right)=5\].

Therefore we get, \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)-n\left( A \right)\]

By putting the values of n (A) and n (B), we get,

\[n\left( A\cup B \right)=5+7-5\]

\[n\left( A\cup B \right)=7\]

Therefore, we get \[n\left( A\cup B \right)=7\]

Hence, option (b) is correct.

Note: Students must note that whenever \[A\subset B\], that is A is subset of B, then \[n\left( A\cup B \right)\], that is the number of elements in A union B is equal to number of elements in set B that is, \[n\left( A\cup B \right)=n\left( B \right)\] when \[A\subset B\]. Also, some students make this mistake of writing \[n\left( A\cup B \right)=n\left( A \right)+n\left( B \right)\] which is wrong. They must remember to subtract \[n\left( A\cap B \right)\] as well. Hence, \[n\left( A\cap B \right)=n\left( A \right)+n\left( B \right)-n\left( A\cap B \right)\].

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

10 examples of law on inertia in our daily life

Write a letter to the principal requesting him to grant class 10 english CBSE

In 1946 the Interim Government was formed under a Sardar class 11 sst CBSE

Change the following sentences into negative and interrogative class 10 english CBSE