Answer
Verified
477.6k+ views
Hint- We will be using an inscribed angle theorem to evaluate the base and height of the triangle which will help in finding the area of the triangle.
In the figure, $\vartriangle {\text{ABC}}$ is an isosceles triangle with ${\text{AB}} = {\text{AC}}$.
Also it is given that $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ (shown in the figure as marked by red arc)
The centre of the circle is O and radius ${\text{OC}} = {\text{OA}} = a$
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ into two equal angles i.e., $\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta $.
According to the inscribed angle theorem, we can say that $\angle {\text{COD}}$ will be twice $\angle {\text{CAD}}$.
i.e., $\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta $
In right angled triangle ODC,
$\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]$
Also, \[\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]\]
Now, ${\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right]$ and ${\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]$
As we know that ${\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)$
${\text{Area of }}\vartriangle {\text{ABC}}$, ${\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]$
Also we know that $\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}$
\[ \Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]\]
Now differentiating above equation with respect to $\theta $ both sides, we get
\[
\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\
\]
Now, for area of the triangle to be maximum put \[\dfrac{{d{\text{A}}}}{{d\theta }} = 0\]
\[ \Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}\]
Now, differentiating equation (1) again with respect to $\theta $, we have
\[
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\
\]
For \[\theta = \dfrac{\pi }{2}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0\]
For \[\theta = \dfrac{\pi }{6}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}\]
As, we know that area of the triangle will be maximum where \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0\] i.e., will be negative .
So, at \[\theta = \dfrac{\pi }{6}\], the area of the given triangle is maximum.
Therefore, option A is correct.
Note- The inscribed angle theorem states that an angle $\theta $ inscribed in a circle is half of the central angle $2\theta $ that subtends the same arc on the circle. Also, here For \[\theta = \dfrac{\pi }{2}\], the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.
In the figure, $\vartriangle {\text{ABC}}$ is an isosceles triangle with ${\text{AB}} = {\text{AC}}$.
Also it is given that $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ (shown in the figure as marked by red arc)
The centre of the circle is O and radius ${\text{OC}} = {\text{OA}} = a$
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ into two equal angles i.e., $\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta $.
According to the inscribed angle theorem, we can say that $\angle {\text{COD}}$ will be twice $\angle {\text{CAD}}$.
i.e., $\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta $
In right angled triangle ODC,
$\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]$
Also, \[\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]\]
Now, ${\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right]$ and ${\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]$
As we know that ${\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)$
${\text{Area of }}\vartriangle {\text{ABC}}$, ${\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]$
Also we know that $\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}$
\[ \Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]\]
Now differentiating above equation with respect to $\theta $ both sides, we get
\[
\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\
\]
Now, for area of the triangle to be maximum put \[\dfrac{{d{\text{A}}}}{{d\theta }} = 0\]
\[ \Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}\]
Now, differentiating equation (1) again with respect to $\theta $, we have
\[
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\
\]
For \[\theta = \dfrac{\pi }{2}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0\]
For \[\theta = \dfrac{\pi }{6}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}\]
As, we know that area of the triangle will be maximum where \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0\] i.e., will be negative .
So, at \[\theta = \dfrac{\pi }{6}\], the area of the given triangle is maximum.
Therefore, option A is correct.
Note- The inscribed angle theorem states that an angle $\theta $ inscribed in a circle is half of the central angle $2\theta $ that subtends the same arc on the circle. Also, here For \[\theta = \dfrac{\pi }{2}\], the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE