
If an isosceles triangle of vertical angle $2\theta $ is inscribed in a circle of radius $a$. Then, area of the triangle is maximum, when $\theta $ is equal to
A. $\dfrac{\pi }{6}$
B. $\dfrac{\pi }{4}$
C. $\dfrac{\pi }{3}$
D. $\dfrac{\pi }{2}$
Answer
623.7k+ views
Hint- We will be using an inscribed angle theorem to evaluate the base and height of the triangle which will help in finding the area of the triangle.
In the figure, $\vartriangle {\text{ABC}}$ is an isosceles triangle with ${\text{AB}} = {\text{AC}}$.
Also it is given that $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ (shown in the figure as marked by red arc)
The centre of the circle is O and radius ${\text{OC}} = {\text{OA}} = a$
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ into two equal angles i.e., $\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta $.
According to the inscribed angle theorem, we can say that $\angle {\text{COD}}$ will be twice $\angle {\text{CAD}}$.
i.e., $\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta $
In right angled triangle ODC,
$\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]$
Also, \[\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]\]
Now, ${\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right]$ and ${\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]$
As we know that ${\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)$
${\text{Area of }}\vartriangle {\text{ABC}}$, ${\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]$
Also we know that $\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}$
\[ \Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]\]
Now differentiating above equation with respect to $\theta $ both sides, we get
\[
\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\
\]
Now, for area of the triangle to be maximum put \[\dfrac{{d{\text{A}}}}{{d\theta }} = 0\]
\[ \Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}\]
Now, differentiating equation (1) again with respect to $\theta $, we have
\[
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\
\]
For \[\theta = \dfrac{\pi }{2}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0\]
For \[\theta = \dfrac{\pi }{6}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}\]
As, we know that area of the triangle will be maximum where \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0\] i.e., will be negative .
So, at \[\theta = \dfrac{\pi }{6}\], the area of the given triangle is maximum.
Therefore, option A is correct.
Note- The inscribed angle theorem states that an angle $\theta $ inscribed in a circle is half of the central angle $2\theta $ that subtends the same arc on the circle. Also, here For \[\theta = \dfrac{\pi }{2}\], the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.
In the figure, $\vartriangle {\text{ABC}}$ is an isosceles triangle with ${\text{AB}} = {\text{AC}}$.
Also it is given that $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ (shown in the figure as marked by red arc)
The centre of the circle is O and radius ${\text{OC}} = {\text{OA}} = a$
Now, let us draw an angle bisector AD from the vertex A of the isosceles triangle which divides $\angle {\text{A}} = \angle {\text{BAC}} = 2\theta $ into two equal angles i.e., $\angle {\text{BAD}} = \angle {\text{CAD}} = \dfrac{{2\theta }}{2} = \theta $.
According to the inscribed angle theorem, we can say that $\angle {\text{COD}}$ will be twice $\angle {\text{CAD}}$.
i.e., $\angle {\text{COD}} = 2\left( {\angle {\text{CAD}}} \right) = 2\theta $
In right angled triangle ODC,
$\cos \left( {2\theta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{OD}}}}{{{\text{OC}}}} = \dfrac{{{\text{OD}}}}{a} \Rightarrow {\text{OD}} = a\left[ {\cos \left( {2\theta } \right)} \right]$
Also, \[\sin \left( {2\theta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{{{\text{DC}}}}{{{\text{OC}}}} = \dfrac{{{\text{DC}}}}{a} \Rightarrow {\text{DC}} = a\left[ {\sin \left( {2\theta } \right)} \right]\]
Now, ${\text{BC}} = 2\left( {{\text{DC}}} \right) = 2a\left[ {\sin \left( {2\theta } \right)} \right]$ and ${\text{AD}} = {\text{OD}} + {\text{OA}} = a\left[ {\cos \left( {2\theta } \right)} \right] + a = a\left[ {\cos \left( {2\theta } \right) + 1} \right]$
As we know that ${\text{Area of a triangle}} = \dfrac{1}{2} \times \left( {{\text{Base}}} \right) \times \left( {{\text{Height}}} \right)$
${\text{Area of }}\vartriangle {\text{ABC}}$, ${\text{A}} = \dfrac{1}{2} \times \left( {{\text{BC}}} \right) \times \left( {{\text{AD}}} \right) = \dfrac{1}{2} \times \left( {2a\left[ {\sin \left( {2\theta } \right)} \right]} \right) \times \left( {a\left[ {\cos \left( {2\theta } \right) + 1} \right]} \right) = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right]$
Also we know that $\sin \left( {2\alpha } \right) = 2\left( {\sin \alpha } \right)\left( {\cos \alpha } \right) \Rightarrow \left( {\sin \alpha } \right)\left( {\cos \alpha } \right) = \dfrac{{\sin \left( {2\alpha } \right)}}{2}$
\[ \Rightarrow {\text{A}} = {a^2}\left[ {\sin \left( {2\theta } \right)\cos \left( {2\theta } \right) + \sin \left( {2\theta } \right)} \right] \Rightarrow {\text{A}} = {a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]\]
Now differentiating above equation with respect to $\theta $ both sides, we get
\[
\dfrac{{d{\text{A}}}}{{d\theta }} = \dfrac{{d\left\{ {{a^2}\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = {a^2}\dfrac{{d\left[ {\dfrac{{\sin \left( {4\theta } \right)}}{2} + \sin \left( {2\theta } \right)} \right]}}{{d\theta }} = {a^2}\left[ {\dfrac{{4\cos \left( {4\theta } \right)}}{2} + 2\cos \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = {a^2}\left[ {2\cos \left( {4\theta } \right) + 2\cos \left( {2\theta } \right)} \right] \Rightarrow \dfrac{{d{\text{A}}}}{{d\theta }} = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]{\text{ }} \to (1{\text{)}} \\
\]
Now, for area of the triangle to be maximum put \[\dfrac{{d{\text{A}}}}{{d\theta }} = 0\]
\[ \Rightarrow 0 = 2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right] \Rightarrow \cos \left( {4\theta } \right) + \cos \left( {2\theta } \right) = 0 \Rightarrow \theta = \dfrac{\pi }{2},\dfrac{\pi }{6}\]
Now, differentiating equation (1) again with respect to $\theta $, we have
\[
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = \dfrac{{d\left\{ {2{a^2}\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]} \right\}}}{{d\theta }} = 2{a^2}\dfrac{{d\left[ {\cos \left( {4\theta } \right) + \cos \left( {2\theta } \right)} \right]}}{{d\theta }} = 2{a^2}\left[ { - 4\sin \left( {4\theta } \right) - 2\sin \left( {2\theta } \right)} \right] \\
\Rightarrow \dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4\theta } \right) + \sin \left( {2\theta } \right)} \right] \\
\]
For \[\theta = \dfrac{\pi }{2}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{2}} \right) + \sin \left( {2 \times \dfrac{\pi }{2}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {2\pi } \right) + \sin \left( \pi \right)} \right] = - 4{a^2}\left[ {2 \times 0 + 0} \right] = 0\]
For \[\theta = \dfrac{\pi }{6}\], \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} = - 4{a^2}\left[ {2\sin \left( {4 \times \dfrac{\pi }{6}} \right) + \sin \left( {2 \times \dfrac{\pi }{6}} \right)} \right] = - 4{a^2}\left[ {2\sin \left( {\dfrac{{2\pi }}{3}} \right) + \sin \left( {\dfrac{\pi }{3}} \right)} \right] = - 4{a^2}\left[ {2 \times \dfrac{{\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right] = - 6\sqrt 3 {a^2}\]
As, we know that area of the triangle will be maximum where \[\dfrac{{{d^2}{\text{A}}}}{{d{\theta ^2}}} < 0\] i.e., will be negative .
So, at \[\theta = \dfrac{\pi }{6}\], the area of the given triangle is maximum.
Therefore, option A is correct.
Note- The inscribed angle theorem states that an angle $\theta $ inscribed in a circle is half of the central angle $2\theta $ that subtends the same arc on the circle. Also, here For \[\theta = \dfrac{\pi }{2}\], the double derivative of the area of the triangle comes out to be zero which means it is an inflection point.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

