
If $\alpha $ is the ${n^{th}}$ root of unity, then $1 + 2\alpha + 3{\alpha ^2} + ... + \,\,to\,n$ terms equal to
A. $\dfrac{{ - n}}{{{{\left( {1 + \alpha } \right)}^2}}}$
B. $\dfrac{{ - n}}{{\left( {1 - \alpha } \right)}}$
C. \[\dfrac{{ - 2n}}{{\left( {1 - \alpha } \right)}}\]
D. \[\dfrac{{ - 2n}}{{{{\left( {1 - \alpha } \right)}^2}}}\]
Answer
620.7k+ views
Hint: Convert the given series into a finite GP & then find the sum suitably then use the properties of $\alpha$ which is the ${n^{th}}$ root of unity to get the final answer.
Complete step-by-step answer:
\[S = 1 + 2\alpha + 3{\alpha ^2} + ... + n{\alpha ^{n - 1}}\]…..(1)
Multiplying both sides with $\alpha$, we get,
\[\alpha S = \alpha + 2{\alpha ^2} + 3{\alpha ^3} + ... + \left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}\] …..(2)
Subtracting eqn (2) from (1)
\[S\left( {1 - \alpha } \right) = 1 + \alpha + {\alpha ^2} + {\alpha ^3} + ... + {\alpha ^{n - 1}} - n{\alpha ^n}\]
Using the formula of sum of G.P.,
Sum of G.P = \[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}\] , where n is the number of terms, r is the common ratio and a being the first term of G.P.
We get,
\[S\left( {1 - \alpha } \right) = \dfrac{{1 - {\alpha ^n}}}{{1 - \alpha }} - n{\alpha ^n}\]
Now \[{\alpha ^n} = 1\] since it is in the \[{n^{th}}\] root of unity.
Therefore,
\[S\left( {1 - \alpha } \right) = - n\]
\[S = \dfrac{{ - n}}{{\left( {1 - \alpha } \right)}}\]
Therefore, Option B is the correct answer.
Note: The given series sum is converted into a finite GP. The first term and the common ratio was found and thereby the sum of the GP was found. It was further simplified by using the property of $\alpha$.
Complete step-by-step answer:
\[S = 1 + 2\alpha + 3{\alpha ^2} + ... + n{\alpha ^{n - 1}}\]…..(1)
Multiplying both sides with $\alpha$, we get,
\[\alpha S = \alpha + 2{\alpha ^2} + 3{\alpha ^3} + ... + \left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}\] …..(2)
Subtracting eqn (2) from (1)
\[S\left( {1 - \alpha } \right) = 1 + \alpha + {\alpha ^2} + {\alpha ^3} + ... + {\alpha ^{n - 1}} - n{\alpha ^n}\]
Using the formula of sum of G.P.,
Sum of G.P = \[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}\] , where n is the number of terms, r is the common ratio and a being the first term of G.P.
We get,
\[S\left( {1 - \alpha } \right) = \dfrac{{1 - {\alpha ^n}}}{{1 - \alpha }} - n{\alpha ^n}\]
Now \[{\alpha ^n} = 1\] since it is in the \[{n^{th}}\] root of unity.
Therefore,
\[S\left( {1 - \alpha } \right) = - n\]
\[S = \dfrac{{ - n}}{{\left( {1 - \alpha } \right)}}\]
Therefore, Option B is the correct answer.
Note: The given series sum is converted into a finite GP. The first term and the common ratio was found and thereby the sum of the GP was found. It was further simplified by using the property of $\alpha$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

