Answer
Verified
492k+ views
Hint: Convert the given series into a finite GP & then find the sum suitably then use the properties of $\alpha$ which is the ${n^{th}}$ root of unity to get the final answer.
Complete step-by-step answer:
\[S = 1 + 2\alpha + 3{\alpha ^2} + ... + n{\alpha ^{n - 1}}\]…..(1)
Multiplying both sides with $\alpha$, we get,
\[\alpha S = \alpha + 2{\alpha ^2} + 3{\alpha ^3} + ... + \left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}\] …..(2)
Subtracting eqn (2) from (1)
\[S\left( {1 - \alpha } \right) = 1 + \alpha + {\alpha ^2} + {\alpha ^3} + ... + {\alpha ^{n - 1}} - n{\alpha ^n}\]
Using the formula of sum of G.P.,
Sum of G.P = \[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}\] , where n is the number of terms, r is the common ratio and a being the first term of G.P.
We get,
\[S\left( {1 - \alpha } \right) = \dfrac{{1 - {\alpha ^n}}}{{1 - \alpha }} - n{\alpha ^n}\]
Now \[{\alpha ^n} = 1\] since it is in the \[{n^{th}}\] root of unity.
Therefore,
\[S\left( {1 - \alpha } \right) = - n\]
\[S = \dfrac{{ - n}}{{\left( {1 - \alpha } \right)}}\]
Therefore, Option B is the correct answer.
Note: The given series sum is converted into a finite GP. The first term and the common ratio was found and thereby the sum of the GP was found. It was further simplified by using the property of $\alpha$.
Complete step-by-step answer:
\[S = 1 + 2\alpha + 3{\alpha ^2} + ... + n{\alpha ^{n - 1}}\]…..(1)
Multiplying both sides with $\alpha$, we get,
\[\alpha S = \alpha + 2{\alpha ^2} + 3{\alpha ^3} + ... + \left( {n - 1} \right){\alpha ^{n - 1}} + n{\alpha ^n}\] …..(2)
Subtracting eqn (2) from (1)
\[S\left( {1 - \alpha } \right) = 1 + \alpha + {\alpha ^2} + {\alpha ^3} + ... + {\alpha ^{n - 1}} - n{\alpha ^n}\]
Using the formula of sum of G.P.,
Sum of G.P = \[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}\] , where n is the number of terms, r is the common ratio and a being the first term of G.P.
We get,
\[S\left( {1 - \alpha } \right) = \dfrac{{1 - {\alpha ^n}}}{{1 - \alpha }} - n{\alpha ^n}\]
Now \[{\alpha ^n} = 1\] since it is in the \[{n^{th}}\] root of unity.
Therefore,
\[S\left( {1 - \alpha } \right) = - n\]
\[S = \dfrac{{ - n}}{{\left( {1 - \alpha } \right)}}\]
Therefore, Option B is the correct answer.
Note: The given series sum is converted into a finite GP. The first term and the common ratio was found and thereby the sum of the GP was found. It was further simplified by using the property of $\alpha$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE