
If $A$=$\left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right]$ and $B$=$\left[ \begin{matrix}
9 & 16 \\
0 & -y \\
\end{matrix} \right]$. Find $x$ and $y$ when $A^2=B$
Answer
502.5k+ views
Hint: We are given equations in the matrix form. So, we will first create a matrix on either side and then we will compare the elements. After doing that we will calculate the value of$x$and$y$. We need to find $A^2$ as well, which means we have to multiply the matrix $A$ by itself. The matrix multiplication is a bit of a complex process because it is not done like the real numbers. After making a matrix on both sides, we will compare the matrices element-wise and obtain the result.
Complete step by step answer:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( x\times 0 \right) & 3\times x+\left( x\times 1 \right) \\
0\times 3+\left( 1\times 0 \right) & 0\times x+\left( 1\times 1 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
9 & 4x \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
${{A}^{2}}=B$
$\Rightarrow \left[ \begin{matrix}
9 & 4x \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
9 & 16 \\
0 & -y \\
\end{matrix} \right]$
Now, we compare the elements. After comparing the element at first row and second column we get:
$4x=16$
$\Rightarrow x=\dfrac{16}{4}$
$\Rightarrow x=4$
Now we compare the element at second row, second column:
$1=-y$
$\Rightarrow y=-1$
So, the values of $x$ and $y$ have been found.
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check the other elements to cross check if you have made any calculation mistakes.
Complete step by step answer:
To multiply the matrix $A$ by itself, we use the formula below for matrix multiplication:
If $A=[a_{ij}]$ is an $m\times n$ matrix and $B=[b_{ij}]$ is an $n\times p$ matrix,
The product AB is an $m\times p$ matrix.
$AB=[c_{ij}]$
Where$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{in}b_{nj}$
So, we have:
$A=\left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right]$
Using the formula we obtain:
$\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
3 & x \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\times 3+\left( x\times 0 \right) & 3\times x+\left( x\times 1 \right) \\
0\times 3+\left( 1\times 0 \right) & 0\times x+\left( 1\times 1 \right) \\
\end{matrix} \right] \\
\end{align}$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
9 & 4x \\
0 & 1 \\
\end{matrix} \right]$
Hence, we have found $A^2$
Now, we plug these values in the equation given:
${{A}^{2}}=B$
$\Rightarrow \left[ \begin{matrix}
9 & 4x \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
9 & 16 \\
0 & -y \\
\end{matrix} \right]$
Now, we compare the elements. After comparing the element at first row and second column we get:
$4x=16$
$\Rightarrow x=\dfrac{16}{4}$
$\Rightarrow x=4$
Now we compare the element at second row, second column:
$1=-y$
$\Rightarrow y=-1$
So, the values of $x$ and $y$ have been found.
Note: Make sure that you add the terms before giving the resultant value in each position of the resultant matrix. Look for any calculation mistake that might occur while doing multiplication. Always check the other elements to cross check if you have made any calculation mistakes.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

