Answer
Verified
375k+ views
Hint: Here in this question, we need to find the determinant of the matrix \[{{A}^{2}}-2A\]. Before solving this, we need to look at the definition of matrix. After that, we will consider the given data and given expression, firstly we are going to take the determinant to the \[{{A}^{2}}-2A\], then evaluate the answer.
Complete step by step answer:
Matrix is defined as the rectangular arrangement of numbers (real or complex) which may be represented as
\[\left( \begin{matrix}
{{a}_{11}} & \ldots & {{a}_{1n}} \\
\vdots & \ddots & \vdots \\
{{a}_{m1}} & \cdots & {{a}_{mn}} \\
\end{matrix} \right)\]
Matrix is enclosed by \[\left( {} \right)\] or \[\left[ {} \right]\].
Compact from the above matrix is represented by \[{{\left[ {{a}_{ij}} \right]}_{m\times n}}\]or \[A=\left[ {{a}_{ij}} \right]\].
Let us solve the given question,
Given data \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\],
Given expression, \[{{A}^{2}}-2A\]
To find determinant \[{{A}^{2}}-2A\]
Now,
\[\left| {{A}^{2}}-2A \right|=\left| A\left( A-2I \right) \right|\]
(Taking A common on Right-hand-side)
Writing the determinants separately, on the basis of \[\left( \left| AB \right|=\left| A \right|\left| B \right| \right)\], then we get
\[\Rightarrow \left| A \right|\left| A-2I \right|\]
We are going to substituting the matrix \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\] and identity matrix \[I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\] is an identity matrix same as \[2\times 2\] on above expression \[{{A}^{2}}-2A\],
\[\Rightarrow \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
We will multiply the first two matrices first and then we will multiply the resultant to remaining matrix, then we get
\[\Rightarrow \left[ \left( 1\times 1-2\times 3 \right) \right]\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
Above matrix is obtained by \[2\times 2\]matrix multiplication,
\[\Rightarrow \left( 1-6 \right)\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
On solving,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
1-2 & 3-0 \\
2-0 & 1-2 \\
\end{matrix} \right] \right|\]
On further evaluation,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
-1 & 3 \\
2 & -1 \\
\end{matrix} \right] \right|\]
Finding the determinant of the above matrix,
\[\Rightarrow -5\times \left( \left( -1\times -1 \right)-2\times 3 \right)\]
Multiplying the above terms,
\[\Rightarrow -5\times \left( 1-6 \right)\]
\[\Rightarrow -5\times -5\]
Therefore, \[{{A}^{2}}-2A=25\].
Note: It is important to note that when we consider two matrices to be equal then in order to hold the equality every corresponding element in both the matrices should be equal. For matrix multiplication, the number of columns present in the first matrix should be equal to the number of rows present in the second matrix.
Complete step by step answer:
Matrix is defined as the rectangular arrangement of numbers (real or complex) which may be represented as
\[\left( \begin{matrix}
{{a}_{11}} & \ldots & {{a}_{1n}} \\
\vdots & \ddots & \vdots \\
{{a}_{m1}} & \cdots & {{a}_{mn}} \\
\end{matrix} \right)\]
Matrix is enclosed by \[\left( {} \right)\] or \[\left[ {} \right]\].
Compact from the above matrix is represented by \[{{\left[ {{a}_{ij}} \right]}_{m\times n}}\]or \[A=\left[ {{a}_{ij}} \right]\].
Let us solve the given question,
Given data \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\],
Given expression, \[{{A}^{2}}-2A\]
To find determinant \[{{A}^{2}}-2A\]
Now,
\[\left| {{A}^{2}}-2A \right|=\left| A\left( A-2I \right) \right|\]
(Taking A common on Right-hand-side)
Writing the determinants separately, on the basis of \[\left( \left| AB \right|=\left| A \right|\left| B \right| \right)\], then we get
\[\Rightarrow \left| A \right|\left| A-2I \right|\]
We are going to substituting the matrix \[A=\left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\] and identity matrix \[I=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\] is an identity matrix same as \[2\times 2\] on above expression \[{{A}^{2}}-2A\],
\[\Rightarrow \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
We will multiply the first two matrices first and then we will multiply the resultant to remaining matrix, then we get
\[\Rightarrow \left[ \left( 1\times 1-2\times 3 \right) \right]\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
Above matrix is obtained by \[2\times 2\]matrix multiplication,
\[\Rightarrow \left( 1-6 \right)\times \left| \left[ \begin{matrix}
1 & 3 \\
2 & 1 \\
\end{matrix} \right]-2\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \right|\]
On solving,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
1-2 & 3-0 \\
2-0 & 1-2 \\
\end{matrix} \right] \right|\]
On further evaluation,
\[\Rightarrow -5\times \left| \left[ \begin{matrix}
-1 & 3 \\
2 & -1 \\
\end{matrix} \right] \right|\]
Finding the determinant of the above matrix,
\[\Rightarrow -5\times \left( \left( -1\times -1 \right)-2\times 3 \right)\]
Multiplying the above terms,
\[\Rightarrow -5\times \left( 1-6 \right)\]
\[\Rightarrow -5\times -5\]
Therefore, \[{{A}^{2}}-2A=25\].
Note: It is important to note that when we consider two matrices to be equal then in order to hold the equality every corresponding element in both the matrices should be equal. For matrix multiplication, the number of columns present in the first matrix should be equal to the number of rows present in the second matrix.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell