# If \[a,b,c,d\]are any four consecutive coefficients of any expanded binomial, then \[\frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]are in

A. A.P.

B. G.P.

C. H.P.

D. None of the above

Answer

Verified

108.3k+ views

**Hint**

The process of expanding and writing terms that are equal to the natural number exponent of the sum or difference of two terms is known as binomial expansion. The exponents of both terms added together in the general term equal n, and the coefficient values are obtained from the Pascal's triangle or by applying the combinations formula. When a bracket is expanded, each term is multiplied by the expression outside of the bracket.

A binomial is a two-term algebraic expression that includes a constant, exponents, a variable, and a coefficient. We must multiply out the brackets in order to expand and simplify an expression, and we must then collect like words in order to simplify the resulting expression.

**Formula used:**

The arithmetic progression is \[a,b,c\]

\[(b - a) = (c - b)\]

The geometric progression is \[a,b,c\]

\[{b^2} = ac\].

**Complete step-by-step solution**

The expansion of the series be \[{(1 + x)^n}\]

\[a,b,c,d\]be the \[(r + 1)\]th , \[(r + 2)\]th, \[(r + 3)\]th and \[(r + 4)\]th coefficients.

So, \[a{ = ^n}{C_r},b{ = ^n}{C_{r + 1}},c{ = ^n}{C_{r + 2}},d{ = ^n}{C_{r + 3}}\]

Here, \[\frac{a}{{a + b}} = \frac{{^n{C_r}}}{{^n{C_r}{ + ^n}{C_{r + 1}}}}\]

\[\frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{n!}}{{r!(n - r)!}} \times \frac{{(r + 1)!(n - r)!}}{{(n + 1)!}}\]

\[ = > \frac{{r + 1}}{{n + 1}}\]

Likely, \[\frac{b}{{b + c}} = \frac{{(r + 1) + 1}}{{n + 1}} = \frac{{r + 2}}{{n + 1}}\]

\[\frac{c}{{c + d}} = \frac{{(r + 2) + 1}}{{n + 1}} = \frac{{r + 3}}{{n + 1}}\]

The series in A.P are

\[ = > \frac{a}{{a + b}},\frac{b}{{b + c}},\frac{c}{{c + d}}\]

The series in H.P are

\[ = > \frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]

**Therefore, the correct option is C.**

**Note**

The number of ways to choose unordered results from potential outcomes is known as the binomial coefficient, commonly referred to as a combination or combinatorial number. When used to represent a binomial coefficient, the symbols and are sometimes read as " select ".

Each row is constrained on both sides by 1 and each coefficient is derived by adding two coefficients from the preceding row, one on the immediate left and one on the immediate right.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

What is 1 divided by 0 class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE