
If \[a,b,c,d\]are any four consecutive coefficients of any expanded binomial, then \[\frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]are in
A. A.P.
B. G.P.
C. H.P.
D. None of the above
Answer
217.2k+ views
Hint
The process of expanding and writing terms that are equal to the natural number exponent of the sum or difference of two terms is known as binomial expansion. The exponents of both terms added together in the general term equal n, and the coefficient values are obtained from the Pascal's triangle or by applying the combinations formula. When a bracket is expanded, each term is multiplied by the expression outside of the bracket.
A binomial is a two-term algebraic expression that includes a constant, exponents, a variable, and a coefficient. We must multiply out the brackets in order to expand and simplify an expression, and we must then collect like words in order to simplify the resulting expression.
Formula used:
The arithmetic progression is \[a,b,c\]
\[(b - a) = (c - b)\]
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
Complete step-by-step solution
The expansion of the series be \[{(1 + x)^n}\]
\[a,b,c,d\]be the \[(r + 1)\]th , \[(r + 2)\]th, \[(r + 3)\]th and \[(r + 4)\]th coefficients.
So, \[a{ = ^n}{C_r},b{ = ^n}{C_{r + 1}},c{ = ^n}{C_{r + 2}},d{ = ^n}{C_{r + 3}}\]
Here, \[\frac{a}{{a + b}} = \frac{{^n{C_r}}}{{^n{C_r}{ + ^n}{C_{r + 1}}}}\]
\[\frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{n!}}{{r!(n - r)!}} \times \frac{{(r + 1)!(n - r)!}}{{(n + 1)!}}\]
\[ = > \frac{{r + 1}}{{n + 1}}\]
Likely, \[\frac{b}{{b + c}} = \frac{{(r + 1) + 1}}{{n + 1}} = \frac{{r + 2}}{{n + 1}}\]
\[\frac{c}{{c + d}} = \frac{{(r + 2) + 1}}{{n + 1}} = \frac{{r + 3}}{{n + 1}}\]
The series in A.P are
\[ = > \frac{a}{{a + b}},\frac{b}{{b + c}},\frac{c}{{c + d}}\]
The series in H.P are
\[ = > \frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]
Therefore, the correct option is C.
Note
The number of ways to choose unordered results from potential outcomes is known as the binomial coefficient, commonly referred to as a combination or combinatorial number. When used to represent a binomial coefficient, the symbols and are sometimes read as " select ".
Each row is constrained on both sides by 1 and each coefficient is derived by adding two coefficients from the preceding row, one on the immediate left and one on the immediate right.
The process of expanding and writing terms that are equal to the natural number exponent of the sum or difference of two terms is known as binomial expansion. The exponents of both terms added together in the general term equal n, and the coefficient values are obtained from the Pascal's triangle or by applying the combinations formula. When a bracket is expanded, each term is multiplied by the expression outside of the bracket.
A binomial is a two-term algebraic expression that includes a constant, exponents, a variable, and a coefficient. We must multiply out the brackets in order to expand and simplify an expression, and we must then collect like words in order to simplify the resulting expression.
Formula used:
The arithmetic progression is \[a,b,c\]
\[(b - a) = (c - b)\]
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
Complete step-by-step solution
The expansion of the series be \[{(1 + x)^n}\]
\[a,b,c,d\]be the \[(r + 1)\]th , \[(r + 2)\]th, \[(r + 3)\]th and \[(r + 4)\]th coefficients.
So, \[a{ = ^n}{C_r},b{ = ^n}{C_{r + 1}},c{ = ^n}{C_{r + 2}},d{ = ^n}{C_{r + 3}}\]
Here, \[\frac{a}{{a + b}} = \frac{{^n{C_r}}}{{^n{C_r}{ + ^n}{C_{r + 1}}}}\]
\[\frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{n!}}{{r!(n - r)!}} \times \frac{{(r + 1)!(n - r)!}}{{(n + 1)!}}\]
\[ = > \frac{{r + 1}}{{n + 1}}\]
Likely, \[\frac{b}{{b + c}} = \frac{{(r + 1) + 1}}{{n + 1}} = \frac{{r + 2}}{{n + 1}}\]
\[\frac{c}{{c + d}} = \frac{{(r + 2) + 1}}{{n + 1}} = \frac{{r + 3}}{{n + 1}}\]
The series in A.P are
\[ = > \frac{a}{{a + b}},\frac{b}{{b + c}},\frac{c}{{c + d}}\]
The series in H.P are
\[ = > \frac{{a + b}}{a},\frac{{b + c}}{b},\frac{{c + d}}{c}\]
Therefore, the correct option is C.
Note
The number of ways to choose unordered results from potential outcomes is known as the binomial coefficient, commonly referred to as a combination or combinatorial number. When used to represent a binomial coefficient, the symbols and are sometimes read as " select ".
Each row is constrained on both sides by 1 and each coefficient is derived by adding two coefficients from the preceding row, one on the immediate left and one on the immediate right.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

