
If ${a_1},{a_2},{a_3},{b_1},{b_2},{b_3} \in R$ and are such that ${a_i}{b_j} \ne 1$ $1 \leqslant i,j \leqslant 3$ , then
$\left| {\begin{array}{*{20}{c}}
{\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}}&{\dfrac{{1 - a_1^3b_2^3}}{{1 - {a_1}{b_2}}}}&{\dfrac{{1 - a_1^3b_3^3}}{{1 - {a_1}{b_3}}}} \\
{\dfrac{{1 - a_2^3b_1^3}}{{1 - {a_2}{b_1}}}}&{\dfrac{{1 - a_2^3b_2^3}}{{1 - {a_2}{b_2}}}}&{\dfrac{{1 - a_2^3b_3^3}}{{1 - {a_2}{b_3}}}} \\
{\dfrac{{1 - a_3^3b_1^3}}{{1 - {a_3}{b_1}}}}&{\dfrac{{1 - a_3^3b_2^3}}{{1 - {a_3}{b_2}}}}&{\dfrac{{1 - a_3^3b_3^3}}{{1 - {a_3}{b_3}}}}
\end{array}} \right| > 0$ provided either ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$ or
${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$ then show that $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$.
Answer
504k+ views
Hint: As the given question is based on determinant, we will use some of the properties of matrices and determinant like splitting determinants to solve the problem such as:
\[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\]
And also the given determinant includes terms of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ which can be used in between to simplify the given complex form.
Complete step-by-step solution:
Step 1: As we have in the determinant the term $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$where the numerator is of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$. Thus substituting this in $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$ we get
\[\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}} = \dfrac{{(1 - {a_1}{b_1})(1 + {a_1}{b_1} + {a_1}^2{b_1}^2)}}{{1 - {a_1}{b_1}}} = 1 + {a_1}{b_1} + {a_1}^2{b_1}^2\]
Using the same procedure and rewriting all the terms in the determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
{1 + {a_1}{b_1} + {a_1}^2{b_1}^2}&{1 + {a_1}{b_2} + {a_1}^2{b_2}^2}&{1 + {a_1}{b_3} + {a_1}^2{b_3}^2} \\
{1 + {a_2}{b_1} + {a_2}^2{b_1}^2}&{1 + {a_2}{b_2} + {a_2}^2{b_2}^2}&{1 + {a_2}{b_3} + {a_2}^2{b_3}^2} \\
{1 + {a_3}{b_1} + {a_3}^2{b_1}^2}&{1 + {a_3}{b_2} + {a_3}^2{b_2}^2}&{1 + {a_3}{b_3} + {a_3}^2{b_3}^2}
\end{array}} \right| > 0\]
Step 2: Now splitting this determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
1&{{a_1}}&{{a_1}^2} \\
1&{{a_2}}&{{a_2}^2} \\
1&{{a_3}}&{{a_3}^2}
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&{{b_1}}&{{b_1}^2} \\
1&{{b_2}}&{{b_2}^2} \\
1&{{b_3}}&{{b_3}^2}
\end{array}} \right| > 0\] ………………..…Formula1
Step 3: Now applying the property, \[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\] we can rewrite formula1 as,
$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$ which is the required solution.
Hence the proof.
Step 4: Now we need to check for each case provided.
For case 1, ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) < 0,({a_2} - {a_3}) < 0,({a_3} - {a_1}) > 0$
And $({b_1} - {b_2}) < 0,({b_2} - {b_3}) < 0,({b_3} - {b_1}) > 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Step 5: Now applying case 2, ${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) > 0,({a_2} - {a_3}) > 0,({a_3} - {a_1}) < 0$
And $({b_1} - {b_2}) > 0,({b_2} - {b_3}) > 0,({b_3} - {b_1}) < 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Final answer : For each of the cases, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Note: Here we need to be careful while splitting the determinant and while applying the cases.
Splitting the determinant can be reverted to check whether both the split and original determinants yield the same value. Applying cases is completely the application of algebraic property in real numbers named as ordering. That is if a,b are real numbers with a0.
\[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\]
And also the given determinant includes terms of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ which can be used in between to simplify the given complex form.
Complete step-by-step solution:
Step 1: As we have in the determinant the term $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$where the numerator is of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$. Thus substituting this in $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$ we get
\[\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}} = \dfrac{{(1 - {a_1}{b_1})(1 + {a_1}{b_1} + {a_1}^2{b_1}^2)}}{{1 - {a_1}{b_1}}} = 1 + {a_1}{b_1} + {a_1}^2{b_1}^2\]
Using the same procedure and rewriting all the terms in the determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
{1 + {a_1}{b_1} + {a_1}^2{b_1}^2}&{1 + {a_1}{b_2} + {a_1}^2{b_2}^2}&{1 + {a_1}{b_3} + {a_1}^2{b_3}^2} \\
{1 + {a_2}{b_1} + {a_2}^2{b_1}^2}&{1 + {a_2}{b_2} + {a_2}^2{b_2}^2}&{1 + {a_2}{b_3} + {a_2}^2{b_3}^2} \\
{1 + {a_3}{b_1} + {a_3}^2{b_1}^2}&{1 + {a_3}{b_2} + {a_3}^2{b_2}^2}&{1 + {a_3}{b_3} + {a_3}^2{b_3}^2}
\end{array}} \right| > 0\]
Step 2: Now splitting this determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
1&{{a_1}}&{{a_1}^2} \\
1&{{a_2}}&{{a_2}^2} \\
1&{{a_3}}&{{a_3}^2}
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&{{b_1}}&{{b_1}^2} \\
1&{{b_2}}&{{b_2}^2} \\
1&{{b_3}}&{{b_3}^2}
\end{array}} \right| > 0\] ………………..…Formula1
Step 3: Now applying the property, \[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\] we can rewrite formula1 as,
$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$ which is the required solution.
Hence the proof.
Step 4: Now we need to check for each case provided.
For case 1, ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) < 0,({a_2} - {a_3}) < 0,({a_3} - {a_1}) > 0$
And $({b_1} - {b_2}) < 0,({b_2} - {b_3}) < 0,({b_3} - {b_1}) > 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Step 5: Now applying case 2, ${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) > 0,({a_2} - {a_3}) > 0,({a_3} - {a_1}) < 0$
And $({b_1} - {b_2}) > 0,({b_2} - {b_3}) > 0,({b_3} - {b_1}) < 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Final answer : For each of the cases, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Note: Here we need to be careful while splitting the determinant and while applying the cases.
Splitting the determinant can be reverted to check whether both the split and original determinants yield the same value. Applying cases is completely the application of algebraic property in real numbers named as ordering. That is if a,b are real numbers with a0.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE
