
If ${a_1},{a_2},{a_3},{b_1},{b_2},{b_3} \in R$ and are such that ${a_i}{b_j} \ne 1$ $1 \leqslant i,j \leqslant 3$ , then
$\left| {\begin{array}{*{20}{c}}
{\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}}&{\dfrac{{1 - a_1^3b_2^3}}{{1 - {a_1}{b_2}}}}&{\dfrac{{1 - a_1^3b_3^3}}{{1 - {a_1}{b_3}}}} \\
{\dfrac{{1 - a_2^3b_1^3}}{{1 - {a_2}{b_1}}}}&{\dfrac{{1 - a_2^3b_2^3}}{{1 - {a_2}{b_2}}}}&{\dfrac{{1 - a_2^3b_3^3}}{{1 - {a_2}{b_3}}}} \\
{\dfrac{{1 - a_3^3b_1^3}}{{1 - {a_3}{b_1}}}}&{\dfrac{{1 - a_3^3b_2^3}}{{1 - {a_3}{b_2}}}}&{\dfrac{{1 - a_3^3b_3^3}}{{1 - {a_3}{b_3}}}}
\end{array}} \right| > 0$ provided either ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$ or
${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$ then show that $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$.
Answer
573.6k+ views
Hint: As the given question is based on determinant, we will use some of the properties of matrices and determinant like splitting determinants to solve the problem such as:
\[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\]
And also the given determinant includes terms of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ which can be used in between to simplify the given complex form.
Complete step-by-step solution:
Step 1: As we have in the determinant the term $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$where the numerator is of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$. Thus substituting this in $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$ we get
\[\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}} = \dfrac{{(1 - {a_1}{b_1})(1 + {a_1}{b_1} + {a_1}^2{b_1}^2)}}{{1 - {a_1}{b_1}}} = 1 + {a_1}{b_1} + {a_1}^2{b_1}^2\]
Using the same procedure and rewriting all the terms in the determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
{1 + {a_1}{b_1} + {a_1}^2{b_1}^2}&{1 + {a_1}{b_2} + {a_1}^2{b_2}^2}&{1 + {a_1}{b_3} + {a_1}^2{b_3}^2} \\
{1 + {a_2}{b_1} + {a_2}^2{b_1}^2}&{1 + {a_2}{b_2} + {a_2}^2{b_2}^2}&{1 + {a_2}{b_3} + {a_2}^2{b_3}^2} \\
{1 + {a_3}{b_1} + {a_3}^2{b_1}^2}&{1 + {a_3}{b_2} + {a_3}^2{b_2}^2}&{1 + {a_3}{b_3} + {a_3}^2{b_3}^2}
\end{array}} \right| > 0\]
Step 2: Now splitting this determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
1&{{a_1}}&{{a_1}^2} \\
1&{{a_2}}&{{a_2}^2} \\
1&{{a_3}}&{{a_3}^2}
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&{{b_1}}&{{b_1}^2} \\
1&{{b_2}}&{{b_2}^2} \\
1&{{b_3}}&{{b_3}^2}
\end{array}} \right| > 0\] ………………..…Formula1
Step 3: Now applying the property, \[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\] we can rewrite formula1 as,
$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$ which is the required solution.
Hence the proof.
Step 4: Now we need to check for each case provided.
For case 1, ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) < 0,({a_2} - {a_3}) < 0,({a_3} - {a_1}) > 0$
And $({b_1} - {b_2}) < 0,({b_2} - {b_3}) < 0,({b_3} - {b_1}) > 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Step 5: Now applying case 2, ${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) > 0,({a_2} - {a_3}) > 0,({a_3} - {a_1}) < 0$
And $({b_1} - {b_2}) > 0,({b_2} - {b_3}) > 0,({b_3} - {b_1}) < 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Final answer : For each of the cases, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Note: Here we need to be careful while splitting the determinant and while applying the cases.
Splitting the determinant can be reverted to check whether both the split and original determinants yield the same value. Applying cases is completely the application of algebraic property in real numbers named as ordering. That is if a,b are real numbers with a0.
\[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\]
And also the given determinant includes terms of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ which can be used in between to simplify the given complex form.
Complete step-by-step solution:
Step 1: As we have in the determinant the term $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$where the numerator is of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$. Thus substituting this in $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$ we get
\[\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}} = \dfrac{{(1 - {a_1}{b_1})(1 + {a_1}{b_1} + {a_1}^2{b_1}^2)}}{{1 - {a_1}{b_1}}} = 1 + {a_1}{b_1} + {a_1}^2{b_1}^2\]
Using the same procedure and rewriting all the terms in the determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
{1 + {a_1}{b_1} + {a_1}^2{b_1}^2}&{1 + {a_1}{b_2} + {a_1}^2{b_2}^2}&{1 + {a_1}{b_3} + {a_1}^2{b_3}^2} \\
{1 + {a_2}{b_1} + {a_2}^2{b_1}^2}&{1 + {a_2}{b_2} + {a_2}^2{b_2}^2}&{1 + {a_2}{b_3} + {a_2}^2{b_3}^2} \\
{1 + {a_3}{b_1} + {a_3}^2{b_1}^2}&{1 + {a_3}{b_2} + {a_3}^2{b_2}^2}&{1 + {a_3}{b_3} + {a_3}^2{b_3}^2}
\end{array}} \right| > 0\]
Step 2: Now splitting this determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
1&{{a_1}}&{{a_1}^2} \\
1&{{a_2}}&{{a_2}^2} \\
1&{{a_3}}&{{a_3}^2}
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&{{b_1}}&{{b_1}^2} \\
1&{{b_2}}&{{b_2}^2} \\
1&{{b_3}}&{{b_3}^2}
\end{array}} \right| > 0\] ………………..…Formula1
Step 3: Now applying the property, \[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\] we can rewrite formula1 as,
$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$ which is the required solution.
Hence the proof.
Step 4: Now we need to check for each case provided.
For case 1, ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) < 0,({a_2} - {a_3}) < 0,({a_3} - {a_1}) > 0$
And $({b_1} - {b_2}) < 0,({b_2} - {b_3}) < 0,({b_3} - {b_1}) > 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Step 5: Now applying case 2, ${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) > 0,({a_2} - {a_3}) > 0,({a_3} - {a_1}) < 0$
And $({b_1} - {b_2}) > 0,({b_2} - {b_3}) > 0,({b_3} - {b_1}) < 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Final answer : For each of the cases, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Note: Here we need to be careful while splitting the determinant and while applying the cases.
Splitting the determinant can be reverted to check whether both the split and original determinants yield the same value. Applying cases is completely the application of algebraic property in real numbers named as ordering. That is if a,b are real numbers with a0.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

