
If a line makes an angle $\alpha $,$\beta $,$\gamma $ with the coordinate axes. Prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$.
Answer
621.9k+ views
Hint: Here we use direction cosines of a line making angles with coordinate axes and its property is also used to solve the problem. We will let the direction cosines and use them.
Now $\alpha ,\beta ,\gamma $ are the angle which the line makes with the co-ordinate axis. So, the direction cosines of the line are
Direction – cosines = $\cos \alpha ,\cos \beta ,\cos \gamma $
Now, as we know the direction cosines of a line are \[l,m,n\]. So, we can write direction cosines as,
$l = \cos \alpha $, $m = \cos \beta $, $n = \cos \gamma $ ……. (1)
Now, using the property of direction-cosines which is ${l^2} + {m^2} + {n^2} = 1$. Putting the values of $l,m,n$ from equation (1) in the property.
Putting $l = \cos \alpha $, $m = \cos \beta $, $n = \cos \gamma $, we get
$ \Rightarrow $${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$ ………. (2)
Now, taking the L. H. S term of the question,
L. H. S = $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1$ ……. (3)
From trigonometric identities, we know that $\cos 2x = 2{\cos ^2}x - 1$, applying this property in equation (3), we get
L. H. S = $(2{\cos ^2}\alpha - 1) + (2{\cos ^2}\beta - 1) + (2{\cos ^2}\gamma - 1) + 1$
Simplifying the above term,
L. H. S = $2({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma ) - 3 + 1$
L. H. S = $2({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma ) - 2$ ……… (4)
Now, from equation (2) putting the value of ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma $ in equation (4), we get
L. H. S = $2(1) - 2 = 0$ = R. H. S
Hence, Proved.
Note: Don’t confuse between the direction ratios and direction cosines. They both look similar but actually they are different. Direction ratios are obtained when we divide the direction cosines by their magnitude. Also, it is recommended to learn trigonometric identities of $\cos 2x$, $\sin 2x$, $\cos 3x$, $\sin 3x$ which are helpful in solving these types of questions. Proper use of identities led to proper solutions in less time without any mistakes.
Now $\alpha ,\beta ,\gamma $ are the angle which the line makes with the co-ordinate axis. So, the direction cosines of the line are
Direction – cosines = $\cos \alpha ,\cos \beta ,\cos \gamma $
Now, as we know the direction cosines of a line are \[l,m,n\]. So, we can write direction cosines as,
$l = \cos \alpha $, $m = \cos \beta $, $n = \cos \gamma $ ……. (1)
Now, using the property of direction-cosines which is ${l^2} + {m^2} + {n^2} = 1$. Putting the values of $l,m,n$ from equation (1) in the property.
Putting $l = \cos \alpha $, $m = \cos \beta $, $n = \cos \gamma $, we get
$ \Rightarrow $${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$ ………. (2)
Now, taking the L. H. S term of the question,
L. H. S = $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1$ ……. (3)
From trigonometric identities, we know that $\cos 2x = 2{\cos ^2}x - 1$, applying this property in equation (3), we get
L. H. S = $(2{\cos ^2}\alpha - 1) + (2{\cos ^2}\beta - 1) + (2{\cos ^2}\gamma - 1) + 1$
Simplifying the above term,
L. H. S = $2({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma ) - 3 + 1$
L. H. S = $2({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma ) - 2$ ……… (4)
Now, from equation (2) putting the value of ${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma $ in equation (4), we get
L. H. S = $2(1) - 2 = 0$ = R. H. S
Hence, Proved.
Note: Don’t confuse between the direction ratios and direction cosines. They both look similar but actually they are different. Direction ratios are obtained when we divide the direction cosines by their magnitude. Also, it is recommended to learn trigonometric identities of $\cos 2x$, $\sin 2x$, $\cos 3x$, $\sin 3x$ which are helpful in solving these types of questions. Proper use of identities led to proper solutions in less time without any mistakes.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

