
If \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\], then find the value of \[{A^{ - 1}}\].
A. \[I\]
B. \[ - I\]
C. \[ - A\]
D. \[A\]
Answer
232.8k+ views
Hint: First, calculate the determinant of the given matrix. Then calculate the adjoint matrix of the given matrix. In the end, substitute the values in the formula for the inverse of the matrix and get the required answer.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\].
Let’s calculate the determinant of the given matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix.
We get,
\[\left| A \right| = 0\left( {0 - 0} \right) - 0\left( {0 - 0} \right) + 1\left( {0 - 1} \right)\]
\[ \Rightarrow \left| A \right| = - 1\] \[.....\left( 1 \right)\]
Now calculate the adjoint matrix of the given matrix by using the co-factor method.
Let’s calculate the co-factors of the matrix.
\[{A_{11}} ={\left( { - 1} \right)^{1 + 1}}\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 0 - 0 \times 0} \right) = 0\]
\[{A_{12}} =\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}{\left( { - 1} \right)^{1 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{13}} ={\left( { - 1} \right)^{1 + 3}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{21}} ={\left( { - 1} \right)^{2 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 0 - 0 \times 1} \right) = 0\]
\[{A_{22}} ={\left( { - 1} \right)^{2 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
={\left( { - 1} \right)^{2 + 2}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{23}} ={\left( { - 1} \right)^{2 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{31}} ={\left( { - 1} \right)^{3 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{32}} ={\left( { - 1} \right)^{3 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right] ={\left( { - 1} \right)^{3 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]= {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 1 - 0 \times 0} \right) = 0\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\].
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
Then,
\[{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = A\]
Hence the correct option is D.
Note: If the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse.
While calculating the inverse matrix, first check whether the determinant is nonzero or not.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\].
Let’s calculate the determinant of the given matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix.
We get,
\[\left| A \right| = 0\left( {0 - 0} \right) - 0\left( {0 - 0} \right) + 1\left( {0 - 1} \right)\]
\[ \Rightarrow \left| A \right| = - 1\] \[.....\left( 1 \right)\]
Now calculate the adjoint matrix of the given matrix by using the co-factor method.
Let’s calculate the co-factors of the matrix.
\[{A_{11}} ={\left( { - 1} \right)^{1 + 1}}\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 0 - 0 \times 0} \right) = 0\]
\[{A_{12}} =\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}{\left( { - 1} \right)^{1 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{13}} ={\left( { - 1} \right)^{1 + 3}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{21}} ={\left( { - 1} \right)^{2 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 0 - 0 \times 1} \right) = 0\]
\[{A_{22}} ={\left( { - 1} \right)^{2 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
={\left( { - 1} \right)^{2 + 2}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{23}} ={\left( { - 1} \right)^{2 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{31}} ={\left( { - 1} \right)^{3 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{32}} ={\left( { - 1} \right)^{3 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right] ={\left( { - 1} \right)^{3 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]= {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 1 - 0 \times 0} \right) = 0\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\].
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
Then,
\[{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = A\]
Hence the correct option is D.
Note: If the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse.
While calculating the inverse matrix, first check whether the determinant is nonzero or not.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

