Answer
Verified
455.1k+ views
Hint: In this question we have found the value of inverse of the given matrix. For that we solve this by using matrices method. First we are going to find the modulus of a given matrix and adjacent of a given matrix. Next, we have to check which option is the right one. So we are going to solve one by one. Commonly first find the \[{{\text{A}}^2}\] next we know that identity matrices.
Formula used: ${{\text{A}}^{{\text{ - 1}}}}{\text{ = }}\dfrac{{{\text{adj(A)}}}}{{{\text{|A|}}}}$
${\text{adj}}\left( {\text{A}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Complete step-by-step answer:
It is given that, ${\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{2}}&{\text{0}}&{{\text{ - 1}}} \\
{\text{5}}&{\text{1}}&{\text{0}} \\
{\text{0}}&{\text{1}}&{\text{3}}
\end{array}} \right)$
Now to find the determinant of the matrix ${\text{A}}$,
\[{\text{|A| = 2}}\left[ {\left( {{\text{1}} \times {\text{3}}} \right) - \left( {1 \times 0} \right)} \right] - {\text{0}}\left[ {\left( {5 \times 3} \right) - \left( {0 \times 0} \right)} \right]{\text{ + }}\left( { - 1} \right)\left[ {\left( {5 \times 1} \right) - \left( {0 \times 1} \right)} \right]\]
Multiplying the terms we get,
\[{\text{|A| = 2}}\left[ {\left( {\text{3}} \right) - \left( 0 \right)} \right] - {\text{0}}\left[ {\left( {15} \right) - \left( 0 \right)} \right] - 1\left[ {\left( 5 \right) - \left( 0 \right)} \right]\]
Simplifying we get,
\[{\text{|A| = 2(3) - 0 - 1(5)}}\]
Multiplying the terms we get,
\[{\text{|A| = 6}} - 5\]
${\text{|A| = 1 }} \ne {\text{ 0}}$(If ${\text{|A| = 0}}$there is no solution)
Now consider the general form of adjacent matrix of a given matrix,
${\text{adj}}\left( {\text{A}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Now we have to find cofactor of each element,
First ${a_{11}}$has been chosen as cancelling first row and first column and proceeding for remaining values like this. ${a_{11}} = \left( {\begin{array}{*{20}{c}}
1&0 \\
1&3
\end{array}} \right) = 3$
For ${a_{12}}$has been chosen as cancelling first row and second column and proceeding for remaining values like this. ${a_{12}} = - \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&3
\end{array}} \right) = - 1$
For ${a_{13}}$ has been chosen as cancelling first row and third column and proceeding for remaining values like this. ${a_{13}} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right) = 1$
For ${a_{21}}$ has been chosen as cancelling second row and first column and proceeding for remaining values like this. ${a_{21}} = - \left( {\begin{array}{*{20}{c}}
5&0 \\
0&3
\end{array}} \right) = - 15$
For ${a_{22}}$has been chosen as cancelling second row and second column and proceeding for remaining values like this. ${a_{22}} = \left( {\begin{array}{*{20}{c}}
2&{ - 1} \\
0&3
\end{array}} \right) = 6$
For ${a_{23}}$ has been chosen as cancelling second row and third column and proceeding for remaining values like this. ${a_{23}} = - \left( {\begin{array}{*{20}{c}}
2&{ - 1} \\
5&0
\end{array}} \right) = - 5$
For ${a_{31}}$ has been chosen as cancelling third row and first column and proceeding for remaining values like this. ${a_{31}} = \left( {\begin{array}{*{20}{c}}
5&1 \\
0&1
\end{array}} \right) = 5$
For ${a_{32}}$ has been chosen as cancelling third row and second column and proceeding for remaining values like this. ${a_{32}} = - \left( {\begin{array}{*{20}{c}}
2&0 \\
0&1
\end{array}} \right) = - 2$
For ${a_{33}}$ has been chosen as cancelling third row and third column and proceeding for remaining values like this. ${a_{33}} = \left( {\begin{array}{*{20}{c}}
2&0 \\
0&1
\end{array}} \right) = 2$
Hence substituting the values we get,
${\text{adj}}\left( {\text{A}} \right) = \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
Since, ${{\text{A}}^{{\text{ - 1}}}}{\text{ = }}\dfrac{{{\text{adj(A)}}}}{{{\text{|A|}}}}$ by using we get,
\[{{\text{A}}^{{\text{ - 1}}}} = \dfrac{{\left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)}}{1}\]
Simplifying we get,
${{\text{A}}^{{\text{ - 1}}}} = \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
Hence we found the inverse matrix of a given matrix $A$. The exact problem is, we have to choose the given option of expressions which is equivalent to the inverse matrix of a given matrix $A$. For that we have checked each expression by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression.
For expression of option A) we have to find ${{\text{A}}^{\text{2}}}{\text{ - 6A + 11I}}$ by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression.
${{\text{A}}^{\text{2}}}{{ = A \times A = }}\left( {\begin{array}{*{20}{c}}
{\text{2}}&{\text{0}}&{{\text{ - 1}}} \\
{\text{5}}&{\text{1}}&{\text{0}} \\
{\text{0}}&{\text{1}}&{\text{3}}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
{\text{2}}&{\text{0}}&{{\text{ - 1}}} \\
{\text{5}}&{\text{1}}&{\text{0}} \\
{\text{0}}&{\text{1}}&{\text{3}}
\end{array}} \right)$
First row and first column multiply and put the values in the first row. Next second row and second column multiply and put the values in second row, third row and third column multiply and put the values in third row.
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
${{\text{A}}^{\text{2}}}{\text{ - 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) + 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 - 12 + 11}&{ - 1 - 0 + 0}&{ - 5 + 6 + 0} \\
{15 - 30 + 0}&{1 - 6 + 11}&{ - 5 - 0 + 0} \\
{5 - 0 + 0}&{4 - 6 + 0}&{9 - 18 + 11}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
Hence we get,
A) ${{\text{A}}^{\text{2}}}{\text{ - 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
For expression of option B) we have to find ${{\text{A}}^{\text{2}}}{\text{ + 6A - 11I}}$by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression. Hence,
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
${{\text{A}}^{\text{2}}}{\text{ + 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) + 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) - 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 + 12 - 11}&{ - 1 + 0 + 0}&{ - 5 - 6 - 0} \\
{15 + 30 + 0}&{1 + 6 - 11}&{ - 5 + 0 + 0} \\
{5 + 0 + 0}&{4 + 6 + 0}&{9 + 18 - 11}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
5&{ - 1}&{ - 11} \\
{45}&{ - 4}&{ - 5} \\
5&{10}&{15}
\end{array}} \right)$
Hence we get,
B) ${{\text{A}}^{\text{2}}}{\text{ + 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
5&{ - 1}&{ - 11} \\
{45}&{ - 4}&{ - 5} \\
5&{10}&{15}
\end{array}} \right)$
For expression of option C) we have to find ${{\text{A}}^{\text{2}}}{\text{ - 6A - 11I}}$ by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression. Hence,
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
${{\text{A}}^{\text{2}}}{\text{ - 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) - 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 - 12 - 11}&{ - 1 - 0 + 0}&{ - 5 + 6 - 0} \\
{15 - 30 - 0}&{1 - 6 - 11}&{ - 5 - 0 - 0} \\
{5 - 0 - 0}&{4 - 6 - 0}&{9 - 18 - 11}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{ - 19}&{ - 1}&1 \\
{ - 15}&{ - 16}&{ - 5} \\
{ - 5}&{ - 2}&{ - 20}
\end{array}} \right)$
Hence we get,
C) ${{\text{A}}^{\text{2}}}{\text{ - 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
{ - 19}&{ - 1}&1 \\
{ - 15}&{ - 16}&{ - 5} \\
{ - 5}&{ - 2}&{ - 20}
\end{array}} \right)$
For expression of option D) we have to find ${{\text{A}}^{\text{2}}}{\text{ + 6A + 11I}}$ by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression. Hence,
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
${{\text{A}}^{\text{2}}}{\text{ + 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) + 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) + 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 + 12 + 11}&{ - 1 + 0 + 0}&{ - 5 + 6 + 0} \\
{15 + 30 - 0}&{1 + 6 + 11}&{ - 5 + 0 + 0} \\
{5 + 0 + 0}&{4 + 6 + 0}&{9 + 18 + 11}
\end{array}} \right)$
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{27}&{ - 1}&1 \\
{45}&{18}&{ - 5} \\
5&{10}&{28}
\end{array}} \right)\]
Hence we get,
D) \[{{\text{A}}^{\text{2}}}{\text{ + 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
{27}&{ - 1}&1 \\
{45}&{18}&{ - 5} \\
5&{10}&{28}
\end{array}} \right)\]
Hence matrix value of ${{\text{A}}^{{\text{ - 1}}}}$ is equal to the expression of option A,
That is, ${{\text{A}}^{{\text{ - 1}}}} = {{\text{A}}^{\text{2}}}{\text{ - 6A + 11I = }}\left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
$\therefore $ Option A is the correct answer.
Note: We have to focus while using an identity matrix to put values correctly and also we have to concentrate on Multiply the First matrix and second matrix of the given matrices for \[{{\text{A}}^{\text{2}}}\] . Next to find the answer, while multiple and adding the matrices enter the value correctly.
Formula used: ${{\text{A}}^{{\text{ - 1}}}}{\text{ = }}\dfrac{{{\text{adj(A)}}}}{{{\text{|A|}}}}$
${\text{adj}}\left( {\text{A}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Complete step-by-step answer:
It is given that, ${\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{2}}&{\text{0}}&{{\text{ - 1}}} \\
{\text{5}}&{\text{1}}&{\text{0}} \\
{\text{0}}&{\text{1}}&{\text{3}}
\end{array}} \right)$
Now to find the determinant of the matrix ${\text{A}}$,
\[{\text{|A| = 2}}\left[ {\left( {{\text{1}} \times {\text{3}}} \right) - \left( {1 \times 0} \right)} \right] - {\text{0}}\left[ {\left( {5 \times 3} \right) - \left( {0 \times 0} \right)} \right]{\text{ + }}\left( { - 1} \right)\left[ {\left( {5 \times 1} \right) - \left( {0 \times 1} \right)} \right]\]
Multiplying the terms we get,
\[{\text{|A| = 2}}\left[ {\left( {\text{3}} \right) - \left( 0 \right)} \right] - {\text{0}}\left[ {\left( {15} \right) - \left( 0 \right)} \right] - 1\left[ {\left( 5 \right) - \left( 0 \right)} \right]\]
Simplifying we get,
\[{\text{|A| = 2(3) - 0 - 1(5)}}\]
Multiplying the terms we get,
\[{\text{|A| = 6}} - 5\]
${\text{|A| = 1 }} \ne {\text{ 0}}$(If ${\text{|A| = 0}}$there is no solution)
Now consider the general form of adjacent matrix of a given matrix,
${\text{adj}}\left( {\text{A}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
Now we have to find cofactor of each element,
First ${a_{11}}$has been chosen as cancelling first row and first column and proceeding for remaining values like this. ${a_{11}} = \left( {\begin{array}{*{20}{c}}
1&0 \\
1&3
\end{array}} \right) = 3$
For ${a_{12}}$has been chosen as cancelling first row and second column and proceeding for remaining values like this. ${a_{12}} = - \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&3
\end{array}} \right) = - 1$
For ${a_{13}}$ has been chosen as cancelling first row and third column and proceeding for remaining values like this. ${a_{13}} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right) = 1$
For ${a_{21}}$ has been chosen as cancelling second row and first column and proceeding for remaining values like this. ${a_{21}} = - \left( {\begin{array}{*{20}{c}}
5&0 \\
0&3
\end{array}} \right) = - 15$
For ${a_{22}}$has been chosen as cancelling second row and second column and proceeding for remaining values like this. ${a_{22}} = \left( {\begin{array}{*{20}{c}}
2&{ - 1} \\
0&3
\end{array}} \right) = 6$
For ${a_{23}}$ has been chosen as cancelling second row and third column and proceeding for remaining values like this. ${a_{23}} = - \left( {\begin{array}{*{20}{c}}
2&{ - 1} \\
5&0
\end{array}} \right) = - 5$
For ${a_{31}}$ has been chosen as cancelling third row and first column and proceeding for remaining values like this. ${a_{31}} = \left( {\begin{array}{*{20}{c}}
5&1 \\
0&1
\end{array}} \right) = 5$
For ${a_{32}}$ has been chosen as cancelling third row and second column and proceeding for remaining values like this. ${a_{32}} = - \left( {\begin{array}{*{20}{c}}
2&0 \\
0&1
\end{array}} \right) = - 2$
For ${a_{33}}$ has been chosen as cancelling third row and third column and proceeding for remaining values like this. ${a_{33}} = \left( {\begin{array}{*{20}{c}}
2&0 \\
0&1
\end{array}} \right) = 2$
Hence substituting the values we get,
${\text{adj}}\left( {\text{A}} \right) = \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
Since, ${{\text{A}}^{{\text{ - 1}}}}{\text{ = }}\dfrac{{{\text{adj(A)}}}}{{{\text{|A|}}}}$ by using we get,
\[{{\text{A}}^{{\text{ - 1}}}} = \dfrac{{\left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)}}{1}\]
Simplifying we get,
${{\text{A}}^{{\text{ - 1}}}} = \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
Hence we found the inverse matrix of a given matrix $A$. The exact problem is, we have to choose the given option of expressions which is equivalent to the inverse matrix of a given matrix $A$. For that we have checked each expression by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression.
For expression of option A) we have to find ${{\text{A}}^{\text{2}}}{\text{ - 6A + 11I}}$ by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression.
${{\text{A}}^{\text{2}}}{{ = A \times A = }}\left( {\begin{array}{*{20}{c}}
{\text{2}}&{\text{0}}&{{\text{ - 1}}} \\
{\text{5}}&{\text{1}}&{\text{0}} \\
{\text{0}}&{\text{1}}&{\text{3}}
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
{\text{2}}&{\text{0}}&{{\text{ - 1}}} \\
{\text{5}}&{\text{1}}&{\text{0}} \\
{\text{0}}&{\text{1}}&{\text{3}}
\end{array}} \right)$
First row and first column multiply and put the values in the first row. Next second row and second column multiply and put the values in second row, third row and third column multiply and put the values in third row.
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
${{\text{A}}^{\text{2}}}{\text{ - 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) + 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 - 12 + 11}&{ - 1 - 0 + 0}&{ - 5 + 6 + 0} \\
{15 - 30 + 0}&{1 - 6 + 11}&{ - 5 - 0 + 0} \\
{5 - 0 + 0}&{4 - 6 + 0}&{9 - 18 + 11}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
Hence we get,
A) ${{\text{A}}^{\text{2}}}{\text{ - 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
For expression of option B) we have to find ${{\text{A}}^{\text{2}}}{\text{ + 6A - 11I}}$by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression. Hence,
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
${{\text{A}}^{\text{2}}}{\text{ + 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) + 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) - 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 + 12 - 11}&{ - 1 + 0 + 0}&{ - 5 - 6 - 0} \\
{15 + 30 + 0}&{1 + 6 - 11}&{ - 5 + 0 + 0} \\
{5 + 0 + 0}&{4 + 6 + 0}&{9 + 18 - 11}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
5&{ - 1}&{ - 11} \\
{45}&{ - 4}&{ - 5} \\
5&{10}&{15}
\end{array}} \right)$
Hence we get,
B) ${{\text{A}}^{\text{2}}}{\text{ + 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
5&{ - 1}&{ - 11} \\
{45}&{ - 4}&{ - 5} \\
5&{10}&{15}
\end{array}} \right)$
For expression of option C) we have to find ${{\text{A}}^{\text{2}}}{\text{ - 6A - 11I}}$ by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression. Hence,
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
${{\text{A}}^{\text{2}}}{\text{ - 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) - 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 - 12 - 11}&{ - 1 - 0 + 0}&{ - 5 + 6 - 0} \\
{15 - 30 - 0}&{1 - 6 - 11}&{ - 5 - 0 - 0} \\
{5 - 0 - 0}&{4 - 6 - 0}&{9 - 18 - 11}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{ - 19}&{ - 1}&1 \\
{ - 15}&{ - 16}&{ - 5} \\
{ - 5}&{ - 2}&{ - 20}
\end{array}} \right)$
Hence we get,
C) ${{\text{A}}^{\text{2}}}{\text{ - 6A - 11I}} = \left( {\begin{array}{*{20}{c}}
{ - 19}&{ - 1}&1 \\
{ - 15}&{ - 16}&{ - 5} \\
{ - 5}&{ - 2}&{ - 20}
\end{array}} \right)$
For expression of option D) we have to find ${{\text{A}}^{\text{2}}}{\text{ + 6A + 11I}}$ by substituting the matrix value of $A$ and ${A^{ - 1}}$ into that expression. Hence,
\[{{\text{A}}^{\text{2}}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right)\]
$I$ is an identity matrix. That is, $I = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Substituting the values of $A$ and ${A^{ - 1}}$ into that expression we get,
${{\text{A}}^{\text{2}}}{\text{ + 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
4&{ - 1}&{ - 5} \\
{15}&1&{ - 5} \\
5&4&9
\end{array}} \right) + 6\left( {\begin{array}{*{20}{c}}
2&0&{ - 1} \\
5&1&0 \\
0&1&3
\end{array}} \right) + 11\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)$
Simplifying matrices we get,
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{4 + 12 + 11}&{ - 1 + 0 + 0}&{ - 5 + 6 + 0} \\
{15 + 30 - 0}&{1 + 6 + 11}&{ - 5 + 0 + 0} \\
{5 + 0 + 0}&{4 + 6 + 0}&{9 + 18 + 11}
\end{array}} \right)$
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{27}&{ - 1}&1 \\
{45}&{18}&{ - 5} \\
5&{10}&{28}
\end{array}} \right)\]
Hence we get,
D) \[{{\text{A}}^{\text{2}}}{\text{ + 6A + 11I}} = \left( {\begin{array}{*{20}{c}}
{27}&{ - 1}&1 \\
{45}&{18}&{ - 5} \\
5&{10}&{28}
\end{array}} \right)\]
Hence matrix value of ${{\text{A}}^{{\text{ - 1}}}}$ is equal to the expression of option A,
That is, ${{\text{A}}^{{\text{ - 1}}}} = {{\text{A}}^{\text{2}}}{\text{ - 6A + 11I = }}\left( {\begin{array}{*{20}{c}}
3&{ - 1}&1 \\
{ - 15}&6&{ - 5} \\
5&{ - 2}&2
\end{array}} \right)$
$\therefore $ Option A is the correct answer.
Note: We have to focus while using an identity matrix to put values correctly and also we have to concentrate on Multiply the First matrix and second matrix of the given matrices for \[{{\text{A}}^{\text{2}}}\] . Next to find the answer, while multiple and adding the matrices enter the value correctly.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE