Answer
Verified
468.6k+ views
Hint: Here ${X^T}$means the transpose of the matrix $X$. First find the transposes of the matrix and then solve accordingly in the problem by comparing the LHS and RHS.
Given that,
$A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$
Consider $A + B$
$
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\
{5 + 1}&{7 + 2}&{9 + 0} \\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right) \\
$
Now consider $A - B$
$
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\
{5 - 1}&{7 - 2}&{9 - 0} \\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right) \\
$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
$
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right)^T} \\
\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right) \\
\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\
$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
$
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\
\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right) \\
\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\
$
In the same way find transpose of $A$ i.e. \[{A^T}\]
\[
{A^T} = {\left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)^T} \\
\\
\therefore {A^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) \\
\]
Now similarly the transpose of \[B\] i.e. \[{B^T}\]
$
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)^T} \\
\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
$
Now find ${A^T} + {B^T}$ i.e.
\[
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{5 + 1}&{ - 2 + 1} \\
{2 + 1}&{7 + 2}&{1 + 3} \\
{3 - 5}&{9 + 0}&{1 + 1}
\end{array}} \right) \\
\\
\therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)..................................\left( 3 \right) \\
\]
Now find \[{A^T} - {B^T}\] i.e.
\[
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 + 4}&{5 - 1}&{ - 2 - 1} \\
{2 - 1}&{7 - 2}&{1 - 3} \\
{3 + 5}&{9 - 0}&{1 - 1}
\end{array}} \right) \\
\\
\therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)................................................\left( 4 \right) \\
\]
From Equation \[\left( 1 \right)\]and Equation \[\left( 3 \right)\]we have
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
From Equation \[\left( 2 \right)\]and Equation \[\left( 4 \right)\] we have
\[{\left( {A - B} \right)^T} = {A^T} - {B^T}\]
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.
Given that,
$A = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)$
Consider $A + B$
$
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{2 + 1}&{3 - 5} \\
{5 + 1}&{7 + 2}&{9 + 0} \\
{ - 2 + 1}&{1 + 3}&{1 + 1}
\end{array}} \right) \\
\\
A + B = \left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right) \\
$
Now consider $A - B$
$
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
{ - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\
{5 - 1}&{7 - 2}&{9 - 0} \\
{ - 2 - 1}&{1 - 3}&{1 - 1}
\end{array}} \right) \\
\\
A - B = \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right) \\
$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
$
{(A + B)^T} = {\left( {\begin{array}{*{20}{c}}
{ - 5}&3&{ - 2} \\
6&9&9 \\
{ - 1}&4&2
\end{array}} \right)^T} \\
\\
{(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right) \\
\\
\therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)......................\left( 1 \right) \\
$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
$
{(A - B)^T} ={ \left( {\begin{array}{*{20}{c}}
3&1&8 \\
4&5&9 \\
{ - 3}&{ - 2}&0
\end{array}} \right)^T} \\
\\
{\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right) \\
\\
\therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)........................\left( 2 \right) \\
$
In the same way find transpose of $A$ i.e. \[{A^T}\]
\[
{A^T} = {\left( {\begin{array}{*{20}{c}}
{ - 1}&2&3 \\
5&7&9 \\
{ - 2}&1&1
\end{array}} \right)^T} \\
\\
\therefore {A^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) \\
\]
Now similarly the transpose of \[B\] i.e. \[{B^T}\]
$
{B^T} = {\left( {\begin{array}{*{20}{c}}
{ - 4}&1&{ - 5} \\
1&2&0 \\
1&3&1
\end{array}} \right)^T} \\
\\
\therefore {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
$
Now find ${A^T} + {B^T}$ i.e.
\[
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 - 4}&{5 + 1}&{ - 2 + 1} \\
{2 + 1}&{7 + 2}&{1 + 3} \\
{3 - 5}&{9 + 0}&{1 + 1}
\end{array}} \right) \\
\\
\therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&6&{ - 1} \\
3&9&4 \\
{ - 2}&9&2
\end{array}} \right)..................................\left( 3 \right) \\
\]
Now find \[{A^T} - {B^T}\] i.e.
\[
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1}&5&{ - 2} \\
2&7&1 \\
3&9&1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{ - 4}&1&1 \\
1&2&3 \\
{ - 5}&0&1
\end{array}} \right) \\
\\
{A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
{ - 1 + 4}&{5 - 1}&{ - 2 - 1} \\
{2 - 1}&{7 - 2}&{1 - 3} \\
{3 + 5}&{9 - 0}&{1 - 1}
\end{array}} \right) \\
\\
\therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}}
3&4&{ - 3} \\
1&5&{ - 2} \\
8&9&0
\end{array}} \right)................................................\left( 4 \right) \\
\]
From Equation \[\left( 1 \right)\]and Equation \[\left( 3 \right)\]we have
\[{\left( {A + B} \right)^T} = {A^T} + {B^T}\]
From Equation \[\left( 2 \right)\]and Equation \[\left( 4 \right)\] we have
\[{\left( {A - B} \right)^T} = {A^T} - {B^T}\]
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell