   Question Answers

# If $A = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right)$ , then verify that  ${\left( {A + B} \right)^T} = {A^T} + {B^T}$ ${\left( {A - B} \right)^T} = {A^T} - {B^T}$  Hint: Here ${X^T}$means the transpose of the matrix $X$. First find the transposes of the matrix and then solve accordingly in the problem by comparing the LHS and RHS.

Given that,
$A = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right)$
Consider $A + B$
$A + B = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right) \\ \\ A + B = \left( {\begin{array}{*{20}{c}} { - 1 - 4}&{2 + 1}&{3 - 5} \\ {5 + 1}&{7 + 2}&{9 + 0} \\ { - 2 + 1}&{1 + 3}&{1 + 1} \end{array}} \right) \\ \\ A + B = \left( {\begin{array}{*{20}{c}} { - 5}&3&{ - 2} \\ 6&9&9 \\ { - 1}&4&2 \end{array}} \right) \\$
Now consider $A - B$
$A - B = \left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right) \\ \\ A - B = \left( {\begin{array}{*{20}{c}} { - 1 - ( - 4)}&{2 - 1}&{3 - ( - 5)} \\ {5 - 1}&{7 - 2}&{9 - 0} \\ { - 2 - 1}&{1 - 3}&{1 - 1} \end{array}} \right) \\ \\ A - B = \left( {\begin{array}{*{20}{c}} 3&1&8 \\ 4&5&9 \\ { - 3}&{ - 2}&0 \end{array}} \right) \\$
Consider the transpose of $(A + B)$ i.e. ${(A + B)^T}$
${(A + B)^T} = {\left( {\begin{array}{*{20}{c}} { - 5}&3&{ - 2} \\ 6&9&9 \\ { - 1}&4&2 \end{array}} \right)^T} \\ \\ {(A + B)^T} = \left( {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\ 3&9&4 \\ { - 2}&9&2 \end{array}} \right) \\ \\ \therefore {(A + B)^T} = \left( {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\ 3&9&4 \\ { - 2}&9&2 \end{array}} \right)......................\left( 1 \right) \\$
Now consider the transpose of $(A - B)$ i.e. ${(A - B)^T}$
${(A - B)^T} ={ \left( {\begin{array}{*{20}{c}} 3&1&8 \\ 4&5&9 \\ { - 3}&{ - 2}&0 \end{array}} \right)^T} \\ \\ {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\ 1&5&{ - 2} \\ 8&9&0 \end{array}} \right) \\ \\ \therefore {\left( {A - B} \right)^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\ 1&5&{ - 2} \\ 8&9&0 \end{array}} \right)........................\left( 2 \right) \\$
In the same way find transpose of $A$ i.e. ${A^T}$
${A^T} = {\left( {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right)^T} \\ \\ \therefore {A^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right) \\$
Now similarly the transpose of $B$ i.e. ${B^T}$
${B^T} = {\left( {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right)^T} \\ \\ \therefore {B^T} = \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right) \\$
Now find ${A^T} + {B^T}$ i.e.
${A^T} + {B^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right) \\ \\ {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}} { - 1 - 4}&{5 + 1}&{ - 2 + 1} \\ {2 + 1}&{7 + 2}&{1 + 3} \\ {3 - 5}&{9 + 0}&{1 + 1} \end{array}} \right) \\ \\ \therefore {A^T} + {B^T} = \left( {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\ 3&9&4 \\ { - 2}&9&2 \end{array}} \right)..................................\left( 3 \right) \\$
Now find ${A^T} - {B^T}$ i.e.
${A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right) \\ \\ {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} { - 1 + 4}&{5 - 1}&{ - 2 - 1} \\ {2 - 1}&{7 - 2}&{1 - 3} \\ {3 + 5}&{9 - 0}&{1 - 1} \end{array}} \right) \\ \\ \therefore {A^T} - {B^T} = \left( {\begin{array}{*{20}{c}} 3&4&{ - 3} \\ 1&5&{ - 2} \\ 8&9&0 \end{array}} \right)................................................\left( 4 \right) \\$
From Equation $\left( 1 \right)$and Equation $\left( 3 \right)$we have
${\left( {A + B} \right)^T} = {A^T} + {B^T}$
From Equation $\left( 2 \right)$and Equation $\left( 4 \right)$ we have
${\left( {A - B} \right)^T} = {A^T} - {B^T}$
Hence proved that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$
${\left( {A - B} \right)^T} = {A^T} - {B^T}$

Note: From this problem it is clear that ${\left( {A + B} \right)^T} = {A^T} + {B^T}$is the property of “Transpose of a sum of matrices” and ${\left( {A - B} \right)^T} = {A^T} - {B^T}$is the property of “Transpose of subtraction of matrices”.

View Notes
Difference Between Left and Right Ventricle  Difference Between Left Kidney and Right Kidney  CBSE Class 7 Maths Chapter 6 - Triangle and Its Properties Formulas  Area of a Sector of a Circle Formula  CBSE Class 12 Maths Formulas  Symmetric Matrix and Skew Symmetric Matrix  Drafting Minutes of a Meeting and ATR  Area of a Rhombus Formula  Perimeter of a Trapezoid Formula  Summary of a Photograph - Poem  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 1 - A Tale of Two Birds  Important Questions for CBSE Class 12 Biology Chapter 12 - Biotechnology and its Applications  CBSE Class 7 Science Water: A Precious Resource Worksheets  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 8 - A Pact with the Sun  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 10 - A Strange Wrestling Match  Important Questions for CBSE Class 6 English Honeysuckle Chapter 8 - A Game of Chance  Important Questions for CBSE Class 11 Business Studies Chapter 7 - Formation of a Company  Important Questions for CBSE Class 7 English Honeycomb Chapter 2 - A Gift Of Chappals  Important Questions for CBSE Class 6 English Honeysuckle Chapter 5 - A Different Kind of School  Important Questions for CBSE Class 11 Physics Chapter 4 - Motion in a Plane  CBSE Class 10 Hindi A Question Paper 2020  Hindi A Class 10 CBSE Question Paper 2009  Hindi A Class 10 CBSE Question Paper 2015  Hindi A Class 10 CBSE Question Paper 2016  Hindi A Class 10 CBSE Question Paper 2012  Hindi A Class 10 CBSE Question Paper 2010  Hindi A Class 10 CBSE Question Paper 2007  Hindi A Class 10 CBSE Question Paper 2013  Hindi A Class 10 CBSE Question Paper 2008  Hindi A Class 10 CBSE Question Paper 2014  RD Sharma Class 12 Maths Solutions Chapter 7 - Adjoint and Inverse of a Matrix  RS Aggarwal Class 12 Solutions Chapter-7 Adjoint and Inverse of a Matrix  RD Sharma Class 12 Solutions Chapter 7 - Adjoint and Inverse of a Matrix (Ex 7.1) Exercise 7.1  RD Sharma Class 12 Solutions Chapter 7 - Adjoint and Inverse of a Matrix (Ex 7.2) Exercise 7.2  RS Aggarwal Class 8 Mathematics Solutions for Chapter-18 Area of a Trapezium and a Polygon  NCERT Solutions for Class 12 Accountancy Chapter 3 - Reconstitution of a Partnership Firm: Admission of a Partner  NCERT Solutions for Class 12 Accountancy Chapter 4 - Reconstitution of a Partnership Firm:Retirement/Death of a Partner  RD Sharma Class 12 Maths Solutions Chapter 32 - Mean and Variance of a Random Variable  NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and Its Properties  RD Sharma Solutions for Class 9 Maths Chapter 19 - Surface Area and Volume of A Right Circular Cylinder  