
If $A = \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right]$ then show that$\left| {3A} \right| = 27\left| A \right|$.
Answer
551.4k+ views
Hint- $\left| {3A} \right|$means first A matrix is multiplied with 3 and then it’s determinant is to be found. Evaluate each LHS and RHS separately, to prove.
We have given that $A = \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right]$
Now we show that $\left| {3A} \right| = 27\left| A \right|$
First let’s calculate the LHS part so $3A = 3\left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]$
Now the determinant of 3A that is $\left| {3A} \right|$
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right|$=$\left[ {3\left( {3 \times 12 - 0 \times 6} \right) - 0\left( {0 \times 12 - 0 \times 6} \right) + 3\left( {0 \times 0 - 0 \times 3} \right)} \right]$
On simplifying we get
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right| = 3 \times 36 = 108$………………………………….. (1)
Now we have to find $27\left| A \right|$
That is $27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27\left[ {1 \times \left( {1 \times 4 - 0 \times 2} \right) - 0\left( {0 \times 4 - 0 \times 2} \right) + 1\left( {0 \times 0 - 0 \times 1} \right)} \right]$
On simplifying we get
$27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27 \times 4 = 108$……………………………… (2)
Clearly equation (1) is equal to equation (2) thus we can say that $\left| {3A} \right| = 27\left| A \right|$
Hence proved.
Note- The key concept involved here is that we need to understand the basics of determinant evaluation: the quantity inside the determinant resembles a matrix , if it is multiplied with a scalar then the determinant of that scalar multiplied matrix is to be found. However if a scalar is multiplied with a determinant then simply the product of determinant and scalar number is to be evaluated.
We have given that $A = \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right]$
Now we show that $\left| {3A} \right| = 27\left| A \right|$
First let’s calculate the LHS part so $3A = 3\left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]$
Now the determinant of 3A that is $\left| {3A} \right|$
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right|$=$\left[ {3\left( {3 \times 12 - 0 \times 6} \right) - 0\left( {0 \times 12 - 0 \times 6} \right) + 3\left( {0 \times 0 - 0 \times 3} \right)} \right]$
On simplifying we get
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right| = 3 \times 36 = 108$………………………………….. (1)
Now we have to find $27\left| A \right|$
That is $27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27\left[ {1 \times \left( {1 \times 4 - 0 \times 2} \right) - 0\left( {0 \times 4 - 0 \times 2} \right) + 1\left( {0 \times 0 - 0 \times 1} \right)} \right]$
On simplifying we get
$27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27 \times 4 = 108$……………………………… (2)
Clearly equation (1) is equal to equation (2) thus we can say that $\left| {3A} \right| = 27\left| A \right|$
Hence proved.
Note- The key concept involved here is that we need to understand the basics of determinant evaluation: the quantity inside the determinant resembles a matrix , if it is multiplied with a scalar then the determinant of that scalar multiplied matrix is to be found. However if a scalar is multiplied with a determinant then simply the product of determinant and scalar number is to be evaluated.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
