Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

If $A = \left\{ {1,2,3,4} \right\}$ and $B = \left\{ {a,b,c,d} \right\}$. Define any four bijections from $A$ to $B$. Also give their inverse functions.

seo-qna
Last updated date: 23rd Apr 2024
Total views: 427.5k
Views today: 4.27k
Answer
VerifiedVerified
427.5k+ views
Hint: Try to make functions from given sets.

We know, $A = \left\{ {1,2,3,4} \right\}$ and $B = \left\{ {a,b,c,d} \right\}$
A function from $A$ to $B$ is said to be bijection if it is one-one and onto. This means different elements of $A$ has different images in $B$.
Also, each element of $B$ has preimage in $A$.
Let ${f_1},{f_2},{f_3}$and${f_4}$are the functions from $A$ to $B$.
\[
  {f_1} = \left\{ {\left( {1,a} \right),\left( {2,b} \right),\left( {3,c} \right),\left( {4,d} \right)} \right\} \\
  {f_2} = \left\{ {\left( {1,b} \right),\left( {2,c} \right),\left( {3,d} \right),\left( {4,a} \right)} \right\} \\
  {f_3} = \left\{ {\left( {1,c} \right),\left( {2,d} \right),\left( {3,a} \right),\left( {4,b} \right)} \right\} \\
  {f_4} = \left\{ {\left( {1,d} \right),\left( {2,a} \right),\left( {3,b} \right),\left( {4,c} \right)} \right\} \\
\]
We can verify that${f_1},{f_2},{f_3}$and${f_4}$ are bijective from $A$ to $B$.
Now,
\[
  {f_1}^{ - 1} = \left\{ {\left( {a,1} \right),\left( {b,2} \right),\left( {c,3} \right),\left( {d,4} \right)} \right\} \\
  {f_2}^{ - 1} = \left\{ {\left( {b,1} \right),\left( {c,2} \right),\left( {d,3} \right),\left( {a,4} \right)} \right\} \\
  {f_3}^{ - 1} = \left\{ {\left( {c,1} \right),\left( {d,2} \right),\left( {a,3} \right),\left( {b,4} \right)} \right\} \\
  {f_4}^{ - 1} = \left\{ {\left( {d,1} \right),\left( {a,2} \right),\left( {b,3} \right),\left( {c,4} \right)} \right\} \\
\]

Note: A bijection, bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set.