Answer
Verified
438k+ views
Hint: A square matrix A is said to be unitary if its transpose is its own inverse and all its entries should belong to complex numbers. A unitary matrix is a matrix whose inverse equals its conjugate transpose. Unitary matrices are the complex analog of real orthogonal matrices.
Complete step-by-step answer:
In mathematics, a complex square matrix A is unitary if its conjugate transpose \[{A^ * }\]is also its inverse.
A unitary matrix can be defined as a square complex matrix A for which,
\[A{A^*} = {A^*}A = I\]
\[{A^*}\]= Conjugate transpose of A
\[I\]= Identity matrix
When we are working with square matrices we are mapping a finite dimensional space to itself whenever we multiply.
Now let's take a situation where we are finding the determinant of the complete equation mentioned above.
\[A{A^*} = {A^*}A = I\]
Taking determinant of complete equation.
\[ \Rightarrow \left| {A{A^*}} \right| = \left| {{A^*}A} \right| = \left| I \right|\]
Separating the determinant of each term in the equation.
\[ \Rightarrow \left| {\left| A \right| \times \left| {{A^*}} \right|} \right| = \left| {\left| {{A^*}} \right| \times \left| A \right|} \right| = \left| I \right|\]
Removing the determinant above the whole equation of both sides.
\[ \Rightarrow \left| A \right| \times \left| {{A^*}} \right| = \left| {{A^*}} \right| \times \left| A \right| = 1\]
Now cancelling\[\left| {{A^*}} \right|\]from the equation we get,
\[ \Rightarrow \left| A \right| = \left| A \right| = 1\]
\[|A|\]can be a complex number with modulus/magnitude 1.
So, option (A) is the correct answer.
Note: If matrix A is called Unitary matrix then it satisfy this condition \[A{A^*} = {A^*}A = I\] where \[{A^*}\]= Transpose Conjugate of A = \[{\left( {A\prime } \right)^T}\] (first you Conjugate and then Transpose , you will get Unitary matrix)
Properties of Unitary matrix:
1) If A is a Unitary matrix then\[{A^{ - 1}}\]is also a Unitary matrix.
2) If A is a Unitary matrix then \[{A^*}\] is also a Unitary matrix.
3) If A&B are Unitary matrices, then A.B is a Unitary matrix.
4) If A is Unitary matrix then \[{A^{ - 1}} = {A^*}\]
5) If A is Unitary matrix then it's determinant is of Modulus Unity (always1).
Complete step-by-step answer:
In mathematics, a complex square matrix A is unitary if its conjugate transpose \[{A^ * }\]is also its inverse.
A unitary matrix can be defined as a square complex matrix A for which,
\[A{A^*} = {A^*}A = I\]
\[{A^*}\]= Conjugate transpose of A
\[I\]= Identity matrix
When we are working with square matrices we are mapping a finite dimensional space to itself whenever we multiply.
Now let's take a situation where we are finding the determinant of the complete equation mentioned above.
\[A{A^*} = {A^*}A = I\]
Taking determinant of complete equation.
\[ \Rightarrow \left| {A{A^*}} \right| = \left| {{A^*}A} \right| = \left| I \right|\]
Separating the determinant of each term in the equation.
\[ \Rightarrow \left| {\left| A \right| \times \left| {{A^*}} \right|} \right| = \left| {\left| {{A^*}} \right| \times \left| A \right|} \right| = \left| I \right|\]
Removing the determinant above the whole equation of both sides.
\[ \Rightarrow \left| A \right| \times \left| {{A^*}} \right| = \left| {{A^*}} \right| \times \left| A \right| = 1\]
Now cancelling\[\left| {{A^*}} \right|\]from the equation we get,
\[ \Rightarrow \left| A \right| = \left| A \right| = 1\]
\[|A|\]can be a complex number with modulus/magnitude 1.
So, option (A) is the correct answer.
Note: If matrix A is called Unitary matrix then it satisfy this condition \[A{A^*} = {A^*}A = I\] where \[{A^*}\]= Transpose Conjugate of A = \[{\left( {A\prime } \right)^T}\] (first you Conjugate and then Transpose , you will get Unitary matrix)
Properties of Unitary matrix:
1) If A is a Unitary matrix then\[{A^{ - 1}}\]is also a Unitary matrix.
2) If A is a Unitary matrix then \[{A^*}\] is also a Unitary matrix.
3) If A&B are Unitary matrices, then A.B is a Unitary matrix.
4) If A is Unitary matrix then \[{A^{ - 1}} = {A^*}\]
5) If A is Unitary matrix then it's determinant is of Modulus Unity (always1).
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE