Courses
Courses for Kids
Free study material
Free LIVE classes
More LIVE
Join Vedantu’s FREE Mastercalss

# If A is a nilpotent matrix of index 2, then find the value of $A{(I + A)^n}$ for any positive integer n.A. ${A^{ - 1}}$B. $A$C. ${A^n}$D. ${I_n}$ Verified
361.5k+ views
Hint: Nilpotent matrix A, means some power of A is equal to the zero matrix.

Given A is a nilpotent matrix of index 2.
${A^2} = 0$
${A^3} = 0$
${A^3} = 0....$
${A^n} = 0$
Now, we have to find the value of $A{(I + A)^n}$
$\Rightarrow A{(I + A)^n} = A{[^n}{C_0}{I^n}{ + ^n}{C_1}{I^{n - 1}}A{ + ^n}{C_2}{I^{n - 2}}{A^2} + ....{ + ^n}{C_n}{I^0}{A^n}]$
$\Rightarrow A{(I + A)^n} = A\left[ {I + nA} \right]$
$\Rightarrow A{(I + A)^n} = AI + n{A^2}$
$\Rightarrow A{(I + A)^n} = A$
$\therefore$ The value of $A{(I + A)^n} = A$

Note: A nilpotent matrix is a square matrix N, such that ${N^k} = 0,$ for some positive integer k. The smallest such k is sometimes called the index of N.
Last updated date: 24th Sep 2023
Total views: 361.5k
Views today: 8.61k