
If \[A\] is \[3 \times 4\] matrix and \[{B^T}\] is matrix such that \[{A^T}B\] and \[B{A^T}\] are both defined, then \[B\] is of the type.
A) \[3 \times 4\]
B) \[3 \times 3\]
C) \[4 \times 3\]
D) \[4 \times 4\]
Answer
566.7k+ views
Hint: Just as with adding matrices, the sizes of the matrices matter when we are multiplying. For matrix multiplication to work, the columns of the second matrix have to have the same number of entries as do the rows of the first matrix.
The transpose of a certain matrix is its number of rows are interchanged to number of columns and number of columns are interchanged to number of rows.
We are going to use the above two concepts to solve the problem.
Complete step-by-step answer:
We have been given that the matrix \[A\] is \[3 \times 4\].
So, this implies \[{A^T}\] is \[4 \times 3\].
Here number of columns of \[{A^T}\]= 3
Here number of rows of \[{A^T}\]= 4
Now for matrix product AB between matrices A and B is defined only if the number of columns in A equals the number of rows in B
We will assume, the B matrix be \[P{\text{ }} \times {\text{ }}Q\] with P be number of rows and Q is number of columns
Since \[{A^T}B\] is defined, so number of columns of \[{A^T}\] must be equal to number of rows of B,
therefore, P = 3.
Also, \[B{A^T}\] is defined, so the number of columns of B must be equal to number of rows of \[{A^T}\],
then Q = 4.
Therefore, matrix B is \[3 \times 4\].
So, the order of the matrix \[{B^T}\] is \[4 \times 3\].
So, option (C) is the correct answer.
Note: When you are noting number of columns and rows of the matrix \[{A^T}\] then you should take into consideration the number rows and columns of the matrix \[{A^T}\] and not the numbers of rows and columns of the matrix A.
The transpose of a certain matrix is its number of rows are interchanged to number of columns and number of columns are interchanged to number of rows.
We are going to use the above two concepts to solve the problem.
Complete step-by-step answer:
We have been given that the matrix \[A\] is \[3 \times 4\].
So, this implies \[{A^T}\] is \[4 \times 3\].
Here number of columns of \[{A^T}\]= 3
Here number of rows of \[{A^T}\]= 4
Now for matrix product AB between matrices A and B is defined only if the number of columns in A equals the number of rows in B
We will assume, the B matrix be \[P{\text{ }} \times {\text{ }}Q\] with P be number of rows and Q is number of columns
Since \[{A^T}B\] is defined, so number of columns of \[{A^T}\] must be equal to number of rows of B,
therefore, P = 3.
Also, \[B{A^T}\] is defined, so the number of columns of B must be equal to number of rows of \[{A^T}\],
then Q = 4.
Therefore, matrix B is \[3 \times 4\].
So, the order of the matrix \[{B^T}\] is \[4 \times 3\].
So, option (C) is the correct answer.
Note: When you are noting number of columns and rows of the matrix \[{A^T}\] then you should take into consideration the number rows and columns of the matrix \[{A^T}\] and not the numbers of rows and columns of the matrix A.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

