If $A = diag(2\;\, - 5\,{\text{ }}9),B = diag(1\,\,1\,\, - 4){\text{ and }}C = diag( - 6\,\,3\,\,4)$ then find $B + C - 2A$.
Last updated date: 27th Mar 2023
•
Total views: 310.8k
•
Views today: 5.87k
Answer
310.8k+ views
Hint : Identify the type of matrix then put the value in the given equation to get the value.
Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = A \\
\\
diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) = B \\
\\
diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 9}&0&0 \\
0&{14}&0 \\
0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.
Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = A \\
\\
diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) = B \\
\\
diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 9}&0&0 \\
0&{14}&0 \\
0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.
Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
