Question
Answers

If $A = diag(2\;\, - 5\,{\text{ }}9),B = diag(1\,\,1\,\, - 4){\text{ and }}C = diag( - 6\,\,3\,\,4)$ then find $B + C - 2A$.

Answer Verified Verified
Hint : Identify the type of matrix then put the value in the given equation to get the value.

Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
  diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
  2&0&0 \\
  0&{ - 5}&0 \\
  0&0&9
\end{array}} \right) = A \\
    \\
  diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
  1&0&0 \\
  0&1&0 \\
  0&0&{ - 4}
\end{array}} \right) = B \\
    \\
  diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
  { - 6}&0&0 \\
  0&3&0 \\
  0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
  1&0&0 \\
  0&1&0 \\
  0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
  { - 6}&0&0 \\
  0&3&0 \\
  0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
  2&0&0 \\
  0&{ - 5}&0 \\
  0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  { - 9}&0&0 \\
  0&{14}&0 \\
  0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.

Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Bookmark added to your notes.
View Notes
×