
If $A = diag(2\;\, - 5\,{\text{ }}9),B = diag(1\,\,1\,\, - 4){\text{ and }}C = diag( - 6\,\,3\,\,4)$ then find $B + C - 2A$.
Answer
609.9k+ views
Hint : Identify the type of matrix then put the value in the given equation to get the value.
Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = A \\
\\
diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) = B \\
\\
diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 9}&0&0 \\
0&{14}&0 \\
0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.
Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = A \\
\\
diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) = B \\
\\
diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 9}&0&0 \\
0&{14}&0 \\
0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.
Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

