Answer
Verified
492.3k+ views
Hint: Make the 3 equations into matrix form. It will become a 3 x 3 matrix. Now, find its determinant. If the matrix is taken as A, then determinant of A is $\left| A \right|=0$. Solve and get the answer.
Complete step-by-step answer:
A solution or example that is not trivial, if the solution is non-zero. Solution/examples that involve the number zero are considered as trivial.
For example the equation x + 5y = 0 has trivial solution (0, 0).
Now-trivial solutions include (5, -1) and (2, 0.4).
Consider the 3 equations
$\begin{align}
& \left( a-1 \right)x=y+z\Rightarrow \left( a-1 \right)x-y-z=0 \\
& \left( b-1 \right)y=z+x\Rightarrow -x+\left( b-1 \right)y-z=0 \\
& \left( c-1 \right)z=x+y\Rightarrow -x-y-\left( c-1 \right)z=0 \\
\end{align}$
These 3 equations can be considered in 3 x 3 matrix form
A 3 x 3 matrix is of the form \[\left[ \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right]\]
Similarly determinant is of form \[\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
Let us consider $A=\left[ \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right]$
$\therefore \left| A \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right|\begin{matrix}
\to Row1\left( {{R}_{1}} \right) \\
\to Row2\left( {{R}_{2}} \right) \\
\to Row3\left( {{R}_{3}} \right) \\
\end{matrix}$
Do ${{R}_{3}}\to {{R}_{3}}\to {{R}_{2}}$
$\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
\left( -1+1 \right) & \left( -1-b+1 \right) & \left( c-1+1 \right) \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
0 & -b & c \\
\end{matrix} \right|$
Now do ${{R}_{2}}\to {{R}_{2}}\to {{R}_{1}}$
\[\left| \begin{matrix}
a-1 & -1 & -1 \\
\left( -1-a+1 \right) & \left( b-1+1 \right) & \left( -1+1 \right) \\
0 & -b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-a & b & 0 \\
0 & -b & c \\
\end{matrix} \right|\]
We know that $\left| A \right|=0$
$\begin{align}
& \left| A \right|\Rightarrow \left( a-1 \right)\left[ bc \right]+1\left( -ac \right)-1\left( ab \right) \\
& =\left( a-1 \right)bc-ac-ab \\
& =abc-bc-ac-ab \\
& \left| A \right|=0 \\
& \Rightarrow abc-bc-ac-ab=0 \\
& \Rightarrow ab+bc+ac=abc \\
\end{align}$
Therefore, the correct answer is option C.
Note: Simplify the determinant A before equating it to zero or else the answer will become complex.One must be aware of the rows and columns operations which helps in simplifying the determinant.
Complete step-by-step answer:
A solution or example that is not trivial, if the solution is non-zero. Solution/examples that involve the number zero are considered as trivial.
For example the equation x + 5y = 0 has trivial solution (0, 0).
Now-trivial solutions include (5, -1) and (2, 0.4).
Consider the 3 equations
$\begin{align}
& \left( a-1 \right)x=y+z\Rightarrow \left( a-1 \right)x-y-z=0 \\
& \left( b-1 \right)y=z+x\Rightarrow -x+\left( b-1 \right)y-z=0 \\
& \left( c-1 \right)z=x+y\Rightarrow -x-y-\left( c-1 \right)z=0 \\
\end{align}$
These 3 equations can be considered in 3 x 3 matrix form
A 3 x 3 matrix is of the form \[\left[ \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right]\]
Similarly determinant is of form \[\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
Let us consider $A=\left[ \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right]$
$\therefore \left| A \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right|\begin{matrix}
\to Row1\left( {{R}_{1}} \right) \\
\to Row2\left( {{R}_{2}} \right) \\
\to Row3\left( {{R}_{3}} \right) \\
\end{matrix}$
Do ${{R}_{3}}\to {{R}_{3}}\to {{R}_{2}}$
$\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
\left( -1+1 \right) & \left( -1-b+1 \right) & \left( c-1+1 \right) \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
0 & -b & c \\
\end{matrix} \right|$
Now do ${{R}_{2}}\to {{R}_{2}}\to {{R}_{1}}$
\[\left| \begin{matrix}
a-1 & -1 & -1 \\
\left( -1-a+1 \right) & \left( b-1+1 \right) & \left( -1+1 \right) \\
0 & -b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-a & b & 0 \\
0 & -b & c \\
\end{matrix} \right|\]
We know that $\left| A \right|=0$
$\begin{align}
& \left| A \right|\Rightarrow \left( a-1 \right)\left[ bc \right]+1\left( -ac \right)-1\left( ab \right) \\
& =\left( a-1 \right)bc-ac-ab \\
& =abc-bc-ac-ab \\
& \left| A \right|=0 \\
& \Rightarrow abc-bc-ac-ab=0 \\
& \Rightarrow ab+bc+ac=abc \\
\end{align}$
Therefore, the correct answer is option C.
Note: Simplify the determinant A before equating it to zero or else the answer will become complex.One must be aware of the rows and columns operations which helps in simplifying the determinant.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE