
If a, b, c are non-zero real numbers and if the system of equations
$\begin{align}
& \left( a-1 \right)x=y+z \\
& \left( b-1 \right)y=z+x \\
& \left( c-1 \right)z=x+y \\
\end{align}$
has a non-trivial solution, then $ab+bc+ca$ is equal to
A. a + b + c
B. abc
C. 1
D. -1
Answer
594.3k+ views
Hint: Make the 3 equations into matrix form. It will become a 3 x 3 matrix. Now, find its determinant. If the matrix is taken as A, then determinant of A is $\left| A \right|=0$. Solve and get the answer.
Complete step-by-step answer:
A solution or example that is not trivial, if the solution is non-zero. Solution/examples that involve the number zero are considered as trivial.
For example the equation x + 5y = 0 has trivial solution (0, 0).
Now-trivial solutions include (5, -1) and (2, 0.4).
Consider the 3 equations
$\begin{align}
& \left( a-1 \right)x=y+z\Rightarrow \left( a-1 \right)x-y-z=0 \\
& \left( b-1 \right)y=z+x\Rightarrow -x+\left( b-1 \right)y-z=0 \\
& \left( c-1 \right)z=x+y\Rightarrow -x-y-\left( c-1 \right)z=0 \\
\end{align}$
These 3 equations can be considered in 3 x 3 matrix form
A 3 x 3 matrix is of the form \[\left[ \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right]\]
Similarly determinant is of form \[\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
Let us consider $A=\left[ \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right]$
$\therefore \left| A \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right|\begin{matrix}
\to Row1\left( {{R}_{1}} \right) \\
\to Row2\left( {{R}_{2}} \right) \\
\to Row3\left( {{R}_{3}} \right) \\
\end{matrix}$
Do ${{R}_{3}}\to {{R}_{3}}\to {{R}_{2}}$
$\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
\left( -1+1 \right) & \left( -1-b+1 \right) & \left( c-1+1 \right) \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
0 & -b & c \\
\end{matrix} \right|$
Now do ${{R}_{2}}\to {{R}_{2}}\to {{R}_{1}}$
\[\left| \begin{matrix}
a-1 & -1 & -1 \\
\left( -1-a+1 \right) & \left( b-1+1 \right) & \left( -1+1 \right) \\
0 & -b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-a & b & 0 \\
0 & -b & c \\
\end{matrix} \right|\]
We know that $\left| A \right|=0$
$\begin{align}
& \left| A \right|\Rightarrow \left( a-1 \right)\left[ bc \right]+1\left( -ac \right)-1\left( ab \right) \\
& =\left( a-1 \right)bc-ac-ab \\
& =abc-bc-ac-ab \\
& \left| A \right|=0 \\
& \Rightarrow abc-bc-ac-ab=0 \\
& \Rightarrow ab+bc+ac=abc \\
\end{align}$
Therefore, the correct answer is option C.
Note: Simplify the determinant A before equating it to zero or else the answer will become complex.One must be aware of the rows and columns operations which helps in simplifying the determinant.
Complete step-by-step answer:
A solution or example that is not trivial, if the solution is non-zero. Solution/examples that involve the number zero are considered as trivial.
For example the equation x + 5y = 0 has trivial solution (0, 0).
Now-trivial solutions include (5, -1) and (2, 0.4).
Consider the 3 equations
$\begin{align}
& \left( a-1 \right)x=y+z\Rightarrow \left( a-1 \right)x-y-z=0 \\
& \left( b-1 \right)y=z+x\Rightarrow -x+\left( b-1 \right)y-z=0 \\
& \left( c-1 \right)z=x+y\Rightarrow -x-y-\left( c-1 \right)z=0 \\
\end{align}$
These 3 equations can be considered in 3 x 3 matrix form
A 3 x 3 matrix is of the form \[\left[ \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right]\]
Similarly determinant is of form \[\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
Let us consider $A=\left[ \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right]$
$\therefore \left| A \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right|\begin{matrix}
\to Row1\left( {{R}_{1}} \right) \\
\to Row2\left( {{R}_{2}} \right) \\
\to Row3\left( {{R}_{3}} \right) \\
\end{matrix}$
Do ${{R}_{3}}\to {{R}_{3}}\to {{R}_{2}}$
$\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
\left( -1+1 \right) & \left( -1-b+1 \right) & \left( c-1+1 \right) \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
0 & -b & c \\
\end{matrix} \right|$
Now do ${{R}_{2}}\to {{R}_{2}}\to {{R}_{1}}$
\[\left| \begin{matrix}
a-1 & -1 & -1 \\
\left( -1-a+1 \right) & \left( b-1+1 \right) & \left( -1+1 \right) \\
0 & -b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-a & b & 0 \\
0 & -b & c \\
\end{matrix} \right|\]
We know that $\left| A \right|=0$
$\begin{align}
& \left| A \right|\Rightarrow \left( a-1 \right)\left[ bc \right]+1\left( -ac \right)-1\left( ab \right) \\
& =\left( a-1 \right)bc-ac-ab \\
& =abc-bc-ac-ab \\
& \left| A \right|=0 \\
& \Rightarrow abc-bc-ac-ab=0 \\
& \Rightarrow ab+bc+ac=abc \\
\end{align}$
Therefore, the correct answer is option C.
Note: Simplify the determinant A before equating it to zero or else the answer will become complex.One must be aware of the rows and columns operations which helps in simplifying the determinant.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

