Answer
Verified
492.3k+ views
Hint: Given three equations,divide First equation by \[{{\cos }^{2}}\alpha \] and second equation by \[{{\cos }^{2}}\beta \].Then substitute the values in third equation and simplify it.
“Complete step-by-step answer:”
Given that \[a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha =p-(1)\]
Now, divide both sides by \[{{\cos }^{2}}\alpha \].
\[\dfrac{a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha }{{{\cos }^{2}}\alpha }=\dfrac{p}{{{\cos }^{2}}\alpha }\]
\[\because \]We know that \[\dfrac{\sin \alpha }{\cos \alpha }=\tan \alpha \]
\[\dfrac{1}{\cos \alpha }=\sec \alpha \]
\[\begin{align}
& a{{\tan }^{2}}\alpha +b=p{{\sec }^{2}}\alpha \\
& \because {{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \\
& \Rightarrow a{{\tan }^{2}}\alpha +b=p\left( 1+{{\tan }^{2}}\alpha \right) \\
& a{{\tan }^{2}}\alpha +b=p+p{{\tan }^{2}}\alpha \\
& a{{\tan }^{2}}\alpha -p{{\tan }^{2}}\alpha =p-b \\
& {{\tan }^{2}}\alpha \left( a-p \right)=p-b \\
& \Rightarrow {{\tan }^{2}}\alpha =\dfrac{p-b}{a-p}-\left( 2 \right) \\
\end{align}\]
Given that \[b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta =q-(3)\]
Now, divide both sides by\[{{\cos }^{2}}\beta \].
\[\begin{align}
& \dfrac{b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta }{{{\cos }^{2}}\beta }=\dfrac{q}{{{\cos }^{2}}\beta } \\
& b{{\tan }^{2}}\beta +a=q{{\sec }^{2}}\beta \\
& b{{\tan }^{2}}\beta +a=q\left( 1+{{\tan }^{2}}\beta \right) \\
& b{{\tan }^{2}}\beta +a=q+q{{\tan }^{2}}\beta \\
& b{{\tan }^{2}}\beta -q{{\tan }^{2}}\beta =q-a \\
& {{\tan }^{2}}\beta \left( b-q \right)=q-a \\
& \therefore {{\tan }^{2}}\beta =\dfrac{q-a}{b-q}-(4) \\
\end{align}\]
From the question, \[a\tan \alpha =b\tan \beta \].
Squaring on both sides we get,
\[\begin{align}
& {{\left( a\tan \alpha \right)}^{2}}={{\left( b\tan \beta \right)}^{2}} \\
& {{a}^{2}}{{\tan }^{2}}\alpha ={{b}^{2}}{{\tan }^{2}}\beta \\
& \Rightarrow \dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }=\dfrac{{{b}^{2}}}{{{a}^{2}}}-\left( 5 \right) \\
\end{align}\]
From (3) and (4) substitute the values of (3) and (4) in (5).
\[\begin{align}
& \dfrac{\dfrac{\left( p-b \right)}{\left( a-p \right)}}{\dfrac{\left( q-a \right)}{\left( b-q \right)}}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& \Rightarrow \dfrac{\left( p-b \right)\left( b-q \right)}{\left( a-p \right)\left( q-a \right)}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& {{a}^{2}}\left[ \left( p-b \right)\left( b-q \right) \right]={{b}^{2}}\left[ \left( a-p \right)\left( q-a \right) \right] \\
\end{align}\]
Opening the brackets and simplifying it,
\[\begin{align}
& {{a}^{2}}\left[ pb-pq-{{b}^{2}}+bq \right]={{b}^{2}}\left[ aq-{{a}^{2}}-pq+ap \right] \\
& \Rightarrow {{a}^{2}}pb-{{a}^{2}}pq-{{a}^{2}}{{b}^{2}}+{{a}^{2}}bq=a{{b}^{2}}q-{{a}^{2}}{{b}^{2}}-{{b}^{2}}pq+a{{b}^{2}}q \\
\end{align}\]
Cancel out \[{{a}^{2}}{{b}^{2}}\] on both sides.
\[\begin{align}
& {{a}^{2}}pb-{{a}^{2}}pq+{{a}^{2}}bq-a{{b}^{2}}q+{{b}^{2}}pq-a{{b}^{2}}p=0 \\
& \left( {{a}^{2}}pb-a{{b}^{2}}p \right)-\left( {{a}^{2}}pq-{{b}^{2}}pq \right)+q\left( {{a}^{2}}b-a{{b}^{2}} \right)=0 \\
& \Rightarrow abp\left( a-b \right)-pq\left( {{a}^{2}}-{{b}^{2}} \right)+abq\left( a-b \right)=0 \\
\end{align}\]
We know, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& \Rightarrow abp-pq\left( a+b \right)+abq=0 \\
& abp+abq=pq\left( a+b \right) \\
& ab\left( p+q \right)=pq\left( a+b \right) \\
& \Rightarrow \dfrac{p+q}{pq}=\dfrac{a+b}{ab} \\
\end{align}\]
\[\Rightarrow \]By dividing and simplifying it,
\[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\]
Hence, proved.
Note: From \[a\tan \alpha =b\tan \beta \], solve them to find \[\dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }\]. By substituting the expression we get \[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\].
“Complete step-by-step answer:”
Given that \[a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha =p-(1)\]
Now, divide both sides by \[{{\cos }^{2}}\alpha \].
\[\dfrac{a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha }{{{\cos }^{2}}\alpha }=\dfrac{p}{{{\cos }^{2}}\alpha }\]
\[\because \]We know that \[\dfrac{\sin \alpha }{\cos \alpha }=\tan \alpha \]
\[\dfrac{1}{\cos \alpha }=\sec \alpha \]
\[\begin{align}
& a{{\tan }^{2}}\alpha +b=p{{\sec }^{2}}\alpha \\
& \because {{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \\
& \Rightarrow a{{\tan }^{2}}\alpha +b=p\left( 1+{{\tan }^{2}}\alpha \right) \\
& a{{\tan }^{2}}\alpha +b=p+p{{\tan }^{2}}\alpha \\
& a{{\tan }^{2}}\alpha -p{{\tan }^{2}}\alpha =p-b \\
& {{\tan }^{2}}\alpha \left( a-p \right)=p-b \\
& \Rightarrow {{\tan }^{2}}\alpha =\dfrac{p-b}{a-p}-\left( 2 \right) \\
\end{align}\]
Given that \[b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta =q-(3)\]
Now, divide both sides by\[{{\cos }^{2}}\beta \].
\[\begin{align}
& \dfrac{b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta }{{{\cos }^{2}}\beta }=\dfrac{q}{{{\cos }^{2}}\beta } \\
& b{{\tan }^{2}}\beta +a=q{{\sec }^{2}}\beta \\
& b{{\tan }^{2}}\beta +a=q\left( 1+{{\tan }^{2}}\beta \right) \\
& b{{\tan }^{2}}\beta +a=q+q{{\tan }^{2}}\beta \\
& b{{\tan }^{2}}\beta -q{{\tan }^{2}}\beta =q-a \\
& {{\tan }^{2}}\beta \left( b-q \right)=q-a \\
& \therefore {{\tan }^{2}}\beta =\dfrac{q-a}{b-q}-(4) \\
\end{align}\]
From the question, \[a\tan \alpha =b\tan \beta \].
Squaring on both sides we get,
\[\begin{align}
& {{\left( a\tan \alpha \right)}^{2}}={{\left( b\tan \beta \right)}^{2}} \\
& {{a}^{2}}{{\tan }^{2}}\alpha ={{b}^{2}}{{\tan }^{2}}\beta \\
& \Rightarrow \dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }=\dfrac{{{b}^{2}}}{{{a}^{2}}}-\left( 5 \right) \\
\end{align}\]
From (3) and (4) substitute the values of (3) and (4) in (5).
\[\begin{align}
& \dfrac{\dfrac{\left( p-b \right)}{\left( a-p \right)}}{\dfrac{\left( q-a \right)}{\left( b-q \right)}}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& \Rightarrow \dfrac{\left( p-b \right)\left( b-q \right)}{\left( a-p \right)\left( q-a \right)}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& {{a}^{2}}\left[ \left( p-b \right)\left( b-q \right) \right]={{b}^{2}}\left[ \left( a-p \right)\left( q-a \right) \right] \\
\end{align}\]
Opening the brackets and simplifying it,
\[\begin{align}
& {{a}^{2}}\left[ pb-pq-{{b}^{2}}+bq \right]={{b}^{2}}\left[ aq-{{a}^{2}}-pq+ap \right] \\
& \Rightarrow {{a}^{2}}pb-{{a}^{2}}pq-{{a}^{2}}{{b}^{2}}+{{a}^{2}}bq=a{{b}^{2}}q-{{a}^{2}}{{b}^{2}}-{{b}^{2}}pq+a{{b}^{2}}q \\
\end{align}\]
Cancel out \[{{a}^{2}}{{b}^{2}}\] on both sides.
\[\begin{align}
& {{a}^{2}}pb-{{a}^{2}}pq+{{a}^{2}}bq-a{{b}^{2}}q+{{b}^{2}}pq-a{{b}^{2}}p=0 \\
& \left( {{a}^{2}}pb-a{{b}^{2}}p \right)-\left( {{a}^{2}}pq-{{b}^{2}}pq \right)+q\left( {{a}^{2}}b-a{{b}^{2}} \right)=0 \\
& \Rightarrow abp\left( a-b \right)-pq\left( {{a}^{2}}-{{b}^{2}} \right)+abq\left( a-b \right)=0 \\
\end{align}\]
We know, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& \Rightarrow abp-pq\left( a+b \right)+abq=0 \\
& abp+abq=pq\left( a+b \right) \\
& ab\left( p+q \right)=pq\left( a+b \right) \\
& \Rightarrow \dfrac{p+q}{pq}=\dfrac{a+b}{ab} \\
\end{align}\]
\[\Rightarrow \]By dividing and simplifying it,
\[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\]
Hence, proved.
Note: From \[a\tan \alpha =b\tan \beta \], solve them to find \[\dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }\]. By substituting the expression we get \[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE