# If $A + B + C = \pi ,$then $\left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = .......................$

Answer

Verified

366.6k+ views

Hint: $\sin \pi = 0$, $\cos (\pi - x) = - \cos x$

Using the properties of trigonometry first, we make the determinant simple and then further solve it.

Also given

$A + B + C = \pi$

Applying trigonometric properties, we get

$

\sin (A + B + C) = \sin \pi = 0 \\

\cos (A + B) = \cos (\pi - C) = - \cos C \\

$

Putting these values in the determinant, we get

$

\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

0&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{ - \cos C}&{ - \tan A}&0

\end{array}} \right| \\

\\

$

Now expanding the determinant through row${R_1}$,we get

$\begin{gathered}

\Delta = 0\left| {\begin{array}{*{20}{c}}

0&{\tan A} \\

{ - \tan A}&0

\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}

{\sin B}&{\tan A} \\

{ - \cos C}&0

\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}

{\sin B}&0 \\

{ - \cos C}&{ - \tan A}

\end{array}} \right| \\

\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\

\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\

\Delta = 0 \\

\end{gathered} $

Therefore, value of determinant,

$\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = 0$

Note: Use of trigonometric properties transforms complex determinant into simple determinant

So, first apply trigonometric properties and then expand the determinant. As this will be the

easiest and efficient way to get the solution of such problems.

Using the properties of trigonometry first, we make the determinant simple and then further solve it.

Also given

$A + B + C = \pi$

Applying trigonometric properties, we get

$

\sin (A + B + C) = \sin \pi = 0 \\

\cos (A + B) = \cos (\pi - C) = - \cos C \\

$

Putting these values in the determinant, we get

$

\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

0&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{ - \cos C}&{ - \tan A}&0

\end{array}} \right| \\

\\

$

Now expanding the determinant through row${R_1}$,we get

$\begin{gathered}

\Delta = 0\left| {\begin{array}{*{20}{c}}

0&{\tan A} \\

{ - \tan A}&0

\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}

{\sin B}&{\tan A} \\

{ - \cos C}&0

\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}

{\sin B}&0 \\

{ - \cos C}&{ - \tan A}

\end{array}} \right| \\

\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\

\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\

\Delta = 0 \\

\end{gathered} $

Therefore, value of determinant,

$\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = 0$

Note: Use of trigonometric properties transforms complex determinant into simple determinant

So, first apply trigonometric properties and then expand the determinant. As this will be the

easiest and efficient way to get the solution of such problems.

Last updated date: 01st Oct 2023

â€¢

Total views: 366.6k

â€¢

Views today: 8.66k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Is current density a scalar or a vector quantity class 12 physics JEE_Main

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE