
If $A + B + C = \pi ,$then $\left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = .......................$
Answer
621.9k+ views
Hint: $\sin \pi = 0$, $\cos (\pi - x) = - \cos x$
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

