# If $A + B + C = \pi ,$then $\left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = .......................$

Last updated date: 21st Mar 2023

•

Total views: 308.1k

•

Views today: 5.87k

Answer

Verified

308.1k+ views

Hint: $\sin \pi = 0$, $\cos (\pi - x) = - \cos x$

Using the properties of trigonometry first, we make the determinant simple and then further solve it.

Also given

$A + B + C = \pi$

Applying trigonometric properties, we get

$

\sin (A + B + C) = \sin \pi = 0 \\

\cos (A + B) = \cos (\pi - C) = - \cos C \\

$

Putting these values in the determinant, we get

$

\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

0&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{ - \cos C}&{ - \tan A}&0

\end{array}} \right| \\

\\

$

Now expanding the determinant through row${R_1}$,we get

$\begin{gathered}

\Delta = 0\left| {\begin{array}{*{20}{c}}

0&{\tan A} \\

{ - \tan A}&0

\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}

{\sin B}&{\tan A} \\

{ - \cos C}&0

\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}

{\sin B}&0 \\

{ - \cos C}&{ - \tan A}

\end{array}} \right| \\

\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\

\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\

\Delta = 0 \\

\end{gathered} $

Therefore, value of determinant,

$\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = 0$

Note: Use of trigonometric properties transforms complex determinant into simple determinant

So, first apply trigonometric properties and then expand the determinant. As this will be the

easiest and efficient way to get the solution of such problems.

Using the properties of trigonometry first, we make the determinant simple and then further solve it.

Also given

$A + B + C = \pi$

Applying trigonometric properties, we get

$

\sin (A + B + C) = \sin \pi = 0 \\

\cos (A + B) = \cos (\pi - C) = - \cos C \\

$

Putting these values in the determinant, we get

$

\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

0&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{ - \cos C}&{ - \tan A}&0

\end{array}} \right| \\

\\

$

Now expanding the determinant through row${R_1}$,we get

$\begin{gathered}

\Delta = 0\left| {\begin{array}{*{20}{c}}

0&{\tan A} \\

{ - \tan A}&0

\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}

{\sin B}&{\tan A} \\

{ - \cos C}&0

\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}

{\sin B}&0 \\

{ - \cos C}&{ - \tan A}

\end{array}} \right| \\

\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\

\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\

\Delta = 0 \\

\end{gathered} $

Therefore, value of determinant,

$\Delta = \left| {\begin{array}{*{20}{c}}

{\sin (A + B + C)}&{\sin B}&{\cos C} \\

{\sin B}&0&{\tan A} \\

{\cos (A + B)}&{ - \tan A}&0

\end{array}} \right| = 0$

Note: Use of trigonometric properties transforms complex determinant into simple determinant

So, first apply trigonometric properties and then expand the determinant. As this will be the

easiest and efficient way to get the solution of such problems.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?