Answer
Verified
495k+ views
Hint: $\sin \pi = 0$, $\cos (\pi - x) = - \cos x$
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Using the properties of trigonometry first, we make the determinant simple and then further solve it.
Also given
$A + B + C = \pi$
Applying trigonometric properties, we get
$
\sin (A + B + C) = \sin \pi = 0 \\
\cos (A + B) = \cos (\pi - C) = - \cos C \\
$
Putting these values in the determinant, we get
$
\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
0&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{ - \cos C}&{ - \tan A}&0
\end{array}} \right| \\
\\
$
Now expanding the determinant through row${R_1}$,we get
$\begin{gathered}
\Delta = 0\left| {\begin{array}{*{20}{c}}
0&{\tan A} \\
{ - \tan A}&0
\end{array}} \right| + ( - \sin B)\left| {\begin{array}{*{20}{c}}
{\sin B}&{\tan A} \\
{ - \cos C}&0
\end{array}} \right| + \cos C\left| {\begin{array}{*{20}{c}}
{\sin B}&0 \\
{ - \cos C}&{ - \tan A}
\end{array}} \right| \\
\Delta = - \sin B(0 - (\tan A)( - \cos C)) + \cos C((\sin B)( - \tan A) - 0) \\
\Delta = \sin B\tan A\cos C - \sin B\tan A\cos C \\
\Delta = 0 \\
\end{gathered} $
Therefore, value of determinant,
$\Delta = \left| {\begin{array}{*{20}{c}}
{\sin (A + B + C)}&{\sin B}&{\cos C} \\
{\sin B}&0&{\tan A} \\
{\cos (A + B)}&{ - \tan A}&0
\end{array}} \right| = 0$
Note: Use of trigonometric properties transforms complex determinant into simple determinant
So, first apply trigonometric properties and then expand the determinant. As this will be the
easiest and efficient way to get the solution of such problems.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE