If ${}^{56}{{P}_{r+6}}:{}^{54}{{P}_{r+3}}=\left( 30800:1 \right)$, find r.
Answer
Verified
457.2k+ views
Hint: We will first start by using the property of ${}^{n}{{P}_{r}}$ that is ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Then, we will use this property to expand the terms and further simplify the expression. Then, finally we will equate it to $\dfrac{30800}{1}$ to find the value of r.
Complete step-by-step answer:
Now, we have been given that,
$\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$
Now, we know that the value of ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, using this we will expand the terms of $\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$ as below,
$\dfrac{\dfrac{56!}{\left( 56-6-r \right)!}}{\dfrac{54!}{\left( 54-3-r \right)!}}=\dfrac{30800}{1}$
Now, we will solve the denominator of the both the expression in numerator and denominator.
$\dfrac{\dfrac{56!}{\left( 50-r \right)!}}{\dfrac{54!}{\left( 51-r \right)!}}=\dfrac{30800}{1}$
Now, we will simplify the left hand side of the equation.
$\dfrac{56!\times \left( 51-r \right)!}{\left( 50-r \right)!\times 54!}=\dfrac{30800}{1}$
Now, we will solve the numerator and denominator by expanding the numerator and denominator using $n!=\left( n-1 \right)!\times n!$ and cancelling the same terms in numerator and denominator.
$\Rightarrow \dfrac{55\times 56\times \left( 51-r \right)!}{\left( 50-r \right)!}=\dfrac{30800}{1}$
Now, we know that $n!=\left( n-1 \right)!\times n$. So, we can write $\left( 51-r \right)!=\left( 50-r \right)!\left( 51-r \right)!$.
$\begin{align}
& \Rightarrow \dfrac{55\times 56\times \left( 50-r \right)!\left( 51-r \right)}{\left( 50-r \right)!}=\dfrac{30800}{1} \\
& 55\times 56\times \left( 51-r \right)=30800 \\
\end{align}$
Now, we will simplify the equation further by taking the constant multiplication terms in left side to division in right side and solve it further to find the value of r.
$\begin{align}
& \left( 51-r \right)=\dfrac{30800}{55\times 56} \\
&\Rightarrow \left( 51-r \right)=\dfrac{560}{56} \\
&\Rightarrow 51-r=10 \\
&\Rightarrow 51-10=r \\
&\Rightarrow r=41 \\
\end{align}$
So, the value of r is 41.
Note: It is important to note that we have used the fact that $n!=\left( n-1 \right)n$ to solve the ratio $\dfrac{\left( 51-r \right)!}{\left( 50-r \right)!}$ . The students must make sure to use this fact accurately, only then they will be able to cancel off terms and simplify further. Also, it is advisable to remember that ${}^{n}{{P}_{r}}={}^{n}{{C}_{r}}\times r!$.
Complete step-by-step answer:
Now, we have been given that,
$\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$
Now, we know that the value of ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, using this we will expand the terms of $\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$ as below,
$\dfrac{\dfrac{56!}{\left( 56-6-r \right)!}}{\dfrac{54!}{\left( 54-3-r \right)!}}=\dfrac{30800}{1}$
Now, we will solve the denominator of the both the expression in numerator and denominator.
$\dfrac{\dfrac{56!}{\left( 50-r \right)!}}{\dfrac{54!}{\left( 51-r \right)!}}=\dfrac{30800}{1}$
Now, we will simplify the left hand side of the equation.
$\dfrac{56!\times \left( 51-r \right)!}{\left( 50-r \right)!\times 54!}=\dfrac{30800}{1}$
Now, we will solve the numerator and denominator by expanding the numerator and denominator using $n!=\left( n-1 \right)!\times n!$ and cancelling the same terms in numerator and denominator.
$\Rightarrow \dfrac{55\times 56\times \left( 51-r \right)!}{\left( 50-r \right)!}=\dfrac{30800}{1}$
Now, we know that $n!=\left( n-1 \right)!\times n$. So, we can write $\left( 51-r \right)!=\left( 50-r \right)!\left( 51-r \right)!$.
$\begin{align}
& \Rightarrow \dfrac{55\times 56\times \left( 50-r \right)!\left( 51-r \right)}{\left( 50-r \right)!}=\dfrac{30800}{1} \\
& 55\times 56\times \left( 51-r \right)=30800 \\
\end{align}$
Now, we will simplify the equation further by taking the constant multiplication terms in left side to division in right side and solve it further to find the value of r.
$\begin{align}
& \left( 51-r \right)=\dfrac{30800}{55\times 56} \\
&\Rightarrow \left( 51-r \right)=\dfrac{560}{56} \\
&\Rightarrow 51-r=10 \\
&\Rightarrow 51-10=r \\
&\Rightarrow r=41 \\
\end{align}$
So, the value of r is 41.
Note: It is important to note that we have used the fact that $n!=\left( n-1 \right)n$ to solve the ratio $\dfrac{\left( 51-r \right)!}{\left( 50-r \right)!}$ . The students must make sure to use this fact accurately, only then they will be able to cancel off terms and simplify further. Also, it is advisable to remember that ${}^{n}{{P}_{r}}={}^{n}{{C}_{r}}\times r!$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE