Answer
Verified
427.5k+ views
Hint: We will first start by using the property of ${}^{n}{{P}_{r}}$ that is ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Then, we will use this property to expand the terms and further simplify the expression. Then, finally we will equate it to $\dfrac{30800}{1}$ to find the value of r.
Complete step-by-step answer:
Now, we have been given that,
$\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$
Now, we know that the value of ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, using this we will expand the terms of $\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$ as below,
$\dfrac{\dfrac{56!}{\left( 56-6-r \right)!}}{\dfrac{54!}{\left( 54-3-r \right)!}}=\dfrac{30800}{1}$
Now, we will solve the denominator of the both the expression in numerator and denominator.
$\dfrac{\dfrac{56!}{\left( 50-r \right)!}}{\dfrac{54!}{\left( 51-r \right)!}}=\dfrac{30800}{1}$
Now, we will simplify the left hand side of the equation.
$\dfrac{56!\times \left( 51-r \right)!}{\left( 50-r \right)!\times 54!}=\dfrac{30800}{1}$
Now, we will solve the numerator and denominator by expanding the numerator and denominator using $n!=\left( n-1 \right)!\times n!$ and cancelling the same terms in numerator and denominator.
$\Rightarrow \dfrac{55\times 56\times \left( 51-r \right)!}{\left( 50-r \right)!}=\dfrac{30800}{1}$
Now, we know that $n!=\left( n-1 \right)!\times n$. So, we can write $\left( 51-r \right)!=\left( 50-r \right)!\left( 51-r \right)!$.
$\begin{align}
& \Rightarrow \dfrac{55\times 56\times \left( 50-r \right)!\left( 51-r \right)}{\left( 50-r \right)!}=\dfrac{30800}{1} \\
& 55\times 56\times \left( 51-r \right)=30800 \\
\end{align}$
Now, we will simplify the equation further by taking the constant multiplication terms in left side to division in right side and solve it further to find the value of r.
$\begin{align}
& \left( 51-r \right)=\dfrac{30800}{55\times 56} \\
&\Rightarrow \left( 51-r \right)=\dfrac{560}{56} \\
&\Rightarrow 51-r=10 \\
&\Rightarrow 51-10=r \\
&\Rightarrow r=41 \\
\end{align}$
So, the value of r is 41.
Note: It is important to note that we have used the fact that $n!=\left( n-1 \right)n$ to solve the ratio $\dfrac{\left( 51-r \right)!}{\left( 50-r \right)!}$ . The students must make sure to use this fact accurately, only then they will be able to cancel off terms and simplify further. Also, it is advisable to remember that ${}^{n}{{P}_{r}}={}^{n}{{C}_{r}}\times r!$.
Complete step-by-step answer:
Now, we have been given that,
$\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$
Now, we know that the value of ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. So, using this we will expand the terms of $\dfrac{{}^{56}{{P}_{6+r}}}{{}^{54}{{P}_{3+r}}}=\dfrac{30800}{1}$ as below,
$\dfrac{\dfrac{56!}{\left( 56-6-r \right)!}}{\dfrac{54!}{\left( 54-3-r \right)!}}=\dfrac{30800}{1}$
Now, we will solve the denominator of the both the expression in numerator and denominator.
$\dfrac{\dfrac{56!}{\left( 50-r \right)!}}{\dfrac{54!}{\left( 51-r \right)!}}=\dfrac{30800}{1}$
Now, we will simplify the left hand side of the equation.
$\dfrac{56!\times \left( 51-r \right)!}{\left( 50-r \right)!\times 54!}=\dfrac{30800}{1}$
Now, we will solve the numerator and denominator by expanding the numerator and denominator using $n!=\left( n-1 \right)!\times n!$ and cancelling the same terms in numerator and denominator.
$\Rightarrow \dfrac{55\times 56\times \left( 51-r \right)!}{\left( 50-r \right)!}=\dfrac{30800}{1}$
Now, we know that $n!=\left( n-1 \right)!\times n$. So, we can write $\left( 51-r \right)!=\left( 50-r \right)!\left( 51-r \right)!$.
$\begin{align}
& \Rightarrow \dfrac{55\times 56\times \left( 50-r \right)!\left( 51-r \right)}{\left( 50-r \right)!}=\dfrac{30800}{1} \\
& 55\times 56\times \left( 51-r \right)=30800 \\
\end{align}$
Now, we will simplify the equation further by taking the constant multiplication terms in left side to division in right side and solve it further to find the value of r.
$\begin{align}
& \left( 51-r \right)=\dfrac{30800}{55\times 56} \\
&\Rightarrow \left( 51-r \right)=\dfrac{560}{56} \\
&\Rightarrow 51-r=10 \\
&\Rightarrow 51-10=r \\
&\Rightarrow r=41 \\
\end{align}$
So, the value of r is 41.
Note: It is important to note that we have used the fact that $n!=\left( n-1 \right)n$ to solve the ratio $\dfrac{\left( 51-r \right)!}{\left( 50-r \right)!}$ . The students must make sure to use this fact accurately, only then they will be able to cancel off terms and simplify further. Also, it is advisable to remember that ${}^{n}{{P}_{r}}={}^{n}{{C}_{r}}\times r!$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE