
If $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$, then the value of $x$ is
(a) $\dfrac{3\pi }{4}$
(b) $\dfrac{\pi }{4}$
(c) $\dfrac{\pi }{3}$
(d) none of these
Answer
603.3k+ views
Hint: In inverse trigonometric functions, we have a formula using which we can add two ${{\tan }^{-1}}$ functions. The formula is, ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$.
Before proceeding with the question, we must know the formulas that are required to solve this question. In inverse trigonometric functions, we have a formula,
${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).............\left( 1 \right)$
Also, in trigonometric functions, we have a formula,
$\csc x=\dfrac{1}{\sin x}.............\left( 2 \right)$
In this question, we have to solve the equation $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$.
$\Rightarrow {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)...........\left( 3 \right)$
Using equation $\left( 1 \right)$ by substituting $a=\cos x$ and $b=\cos x$ from equation $\left( 3 \right)$, we get,
${{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\cos x\cos x} \right)={{\tan }^{-1}}\left( 2\csc x \right)$
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right)............\left( 4 \right)$
Also, in trigonometric functions, we have an identity,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1..............\left( 5 \right)\]
From equation $\left( 5 \right)$, we can also write,
$1-{{\cos }^{2}}x={{\sin }^{2}}x.................\left( 6 \right)$
Substituting $1-{{\cos }^{2}}x={{\sin }^{2}}x$ from equation $\left( 6 \right)$ in equation $\left( 4 \right)$, we get,
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right).............\left( 7 \right)$
Since in equation $\left( 7 \right)$, we have ${{\tan }^{-1}}$ on both sides of the equality.
Hence, we can now equate the arguments of ${{\tan }^{-1}}$ function in equation $\left( 7 \right)$.
$\Rightarrow \dfrac{2\cos x}{{{\sin }^{2}}x}=2\csc x..................\left( 8 \right)$
From equation $\left( 2 \right)$, we have $\csc x=\dfrac{1}{\sin x}$. Substituting $\csc x=\dfrac{1}{\sin x}$ from equation $\left( 2 \right)$ in equation $\left( 8 \right)$, we get,
$\dfrac{2\cos x}{{{\sin }^{2}}x}=\dfrac{2}{\sin x}............\left( 9 \right)$
Cancelling $2$ and $\sin x$ on both the sides of equality in equation $\left( 9 \right)$, we get,
$\begin{align}
& \dfrac{\cos x}{\sin x}=1 \\
& \Rightarrow \cos x=\sin x \\
\end{align}$
Since, $\cos x$ is equal to $\sin x$ for $x=\dfrac{\pi }{4}$, therefore the answer is $x=\dfrac{\pi }{4}$.
Hence the answer is option (b).
Note: There can be more than one answer for this question. Since we had to solve the equation $\cos x=\sin x$ in the final step, we found it’s solution as $x=\dfrac{\pi }{4}$. But we must know that $\cos x=\sin x$ also for $x=\dfrac{5\pi }{4},\dfrac{9\pi }{4},\dfrac{13\pi }{4}......$. So, we must check for all the other options since there can be more than one option correct in a question. In the options of this question, there is only one option which is satisfying the equation $\cos x=\sin x$. That is why we have marked only a single option as a correct option in this question.
Before proceeding with the question, we must know the formulas that are required to solve this question. In inverse trigonometric functions, we have a formula,
${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).............\left( 1 \right)$
Also, in trigonometric functions, we have a formula,
$\csc x=\dfrac{1}{\sin x}.............\left( 2 \right)$
In this question, we have to solve the equation $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$.
$\Rightarrow {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)...........\left( 3 \right)$
Using equation $\left( 1 \right)$ by substituting $a=\cos x$ and $b=\cos x$ from equation $\left( 3 \right)$, we get,
${{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\cos x\cos x} \right)={{\tan }^{-1}}\left( 2\csc x \right)$
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right)............\left( 4 \right)$
Also, in trigonometric functions, we have an identity,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1..............\left( 5 \right)\]
From equation $\left( 5 \right)$, we can also write,
$1-{{\cos }^{2}}x={{\sin }^{2}}x.................\left( 6 \right)$
Substituting $1-{{\cos }^{2}}x={{\sin }^{2}}x$ from equation $\left( 6 \right)$ in equation $\left( 4 \right)$, we get,
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right).............\left( 7 \right)$
Since in equation $\left( 7 \right)$, we have ${{\tan }^{-1}}$ on both sides of the equality.
Hence, we can now equate the arguments of ${{\tan }^{-1}}$ function in equation $\left( 7 \right)$.
$\Rightarrow \dfrac{2\cos x}{{{\sin }^{2}}x}=2\csc x..................\left( 8 \right)$
From equation $\left( 2 \right)$, we have $\csc x=\dfrac{1}{\sin x}$. Substituting $\csc x=\dfrac{1}{\sin x}$ from equation $\left( 2 \right)$ in equation $\left( 8 \right)$, we get,
$\dfrac{2\cos x}{{{\sin }^{2}}x}=\dfrac{2}{\sin x}............\left( 9 \right)$
Cancelling $2$ and $\sin x$ on both the sides of equality in equation $\left( 9 \right)$, we get,
$\begin{align}
& \dfrac{\cos x}{\sin x}=1 \\
& \Rightarrow \cos x=\sin x \\
\end{align}$
Since, $\cos x$ is equal to $\sin x$ for $x=\dfrac{\pi }{4}$, therefore the answer is $x=\dfrac{\pi }{4}$.
Hence the answer is option (b).
Note: There can be more than one answer for this question. Since we had to solve the equation $\cos x=\sin x$ in the final step, we found it’s solution as $x=\dfrac{\pi }{4}$. But we must know that $\cos x=\sin x$ also for $x=\dfrac{5\pi }{4},\dfrac{9\pi }{4},\dfrac{13\pi }{4}......$. So, we must check for all the other options since there can be more than one option correct in a question. In the options of this question, there is only one option which is satisfying the equation $\cos x=\sin x$. That is why we have marked only a single option as a correct option in this question.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

