If $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$, then the value of $x$ is
(a) $\dfrac{3\pi }{4}$
(b) $\dfrac{\pi }{4}$
(c) $\dfrac{\pi }{3}$
(d) none of these
Answer
Verified
507.9k+ views
Hint: In inverse trigonometric functions, we have a formula using which we can add two ${{\tan }^{-1}}$ functions. The formula is, ${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)$.
Before proceeding with the question, we must know the formulas that are required to solve this question. In inverse trigonometric functions, we have a formula,
${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).............\left( 1 \right)$
Also, in trigonometric functions, we have a formula,
$\csc x=\dfrac{1}{\sin x}.............\left( 2 \right)$
In this question, we have to solve the equation $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$.
$\Rightarrow {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)...........\left( 3 \right)$
Using equation $\left( 1 \right)$ by substituting $a=\cos x$ and $b=\cos x$ from equation $\left( 3 \right)$, we get,
${{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\cos x\cos x} \right)={{\tan }^{-1}}\left( 2\csc x \right)$
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right)............\left( 4 \right)$
Also, in trigonometric functions, we have an identity,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1..............\left( 5 \right)\]
From equation $\left( 5 \right)$, we can also write,
$1-{{\cos }^{2}}x={{\sin }^{2}}x.................\left( 6 \right)$
Substituting $1-{{\cos }^{2}}x={{\sin }^{2}}x$ from equation $\left( 6 \right)$ in equation $\left( 4 \right)$, we get,
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right).............\left( 7 \right)$
Since in equation $\left( 7 \right)$, we have ${{\tan }^{-1}}$ on both sides of the equality.
Hence, we can now equate the arguments of ${{\tan }^{-1}}$ function in equation $\left( 7 \right)$.
$\Rightarrow \dfrac{2\cos x}{{{\sin }^{2}}x}=2\csc x..................\left( 8 \right)$
From equation $\left( 2 \right)$, we have $\csc x=\dfrac{1}{\sin x}$. Substituting $\csc x=\dfrac{1}{\sin x}$ from equation $\left( 2 \right)$ in equation $\left( 8 \right)$, we get,
$\dfrac{2\cos x}{{{\sin }^{2}}x}=\dfrac{2}{\sin x}............\left( 9 \right)$
Cancelling $2$ and $\sin x$ on both the sides of equality in equation $\left( 9 \right)$, we get,
$\begin{align}
& \dfrac{\cos x}{\sin x}=1 \\
& \Rightarrow \cos x=\sin x \\
\end{align}$
Since, $\cos x$ is equal to $\sin x$ for $x=\dfrac{\pi }{4}$, therefore the answer is $x=\dfrac{\pi }{4}$.
Hence the answer is option (b).
Note: There can be more than one answer for this question. Since we had to solve the equation $\cos x=\sin x$ in the final step, we found it’s solution as $x=\dfrac{\pi }{4}$. But we must know that $\cos x=\sin x$ also for $x=\dfrac{5\pi }{4},\dfrac{9\pi }{4},\dfrac{13\pi }{4}......$. So, we must check for all the other options since there can be more than one option correct in a question. In the options of this question, there is only one option which is satisfying the equation $\cos x=\sin x$. That is why we have marked only a single option as a correct option in this question.
Before proceeding with the question, we must know the formulas that are required to solve this question. In inverse trigonometric functions, we have a formula,
${{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).............\left( 1 \right)$
Also, in trigonometric functions, we have a formula,
$\csc x=\dfrac{1}{\sin x}.............\left( 2 \right)$
In this question, we have to solve the equation $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$.
$\Rightarrow {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)...........\left( 3 \right)$
Using equation $\left( 1 \right)$ by substituting $a=\cos x$ and $b=\cos x$ from equation $\left( 3 \right)$, we get,
${{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\cos x\cos x} \right)={{\tan }^{-1}}\left( 2\csc x \right)$
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right)............\left( 4 \right)$
Also, in trigonometric functions, we have an identity,
\[{{\sin }^{2}}x+{{\cos }^{2}}x=1..............\left( 5 \right)\]
From equation $\left( 5 \right)$, we can also write,
$1-{{\cos }^{2}}x={{\sin }^{2}}x.................\left( 6 \right)$
Substituting $1-{{\cos }^{2}}x={{\sin }^{2}}x$ from equation $\left( 6 \right)$ in equation $\left( 4 \right)$, we get,
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( 2\csc x \right).............\left( 7 \right)$
Since in equation $\left( 7 \right)$, we have ${{\tan }^{-1}}$ on both sides of the equality.
Hence, we can now equate the arguments of ${{\tan }^{-1}}$ function in equation $\left( 7 \right)$.
$\Rightarrow \dfrac{2\cos x}{{{\sin }^{2}}x}=2\csc x..................\left( 8 \right)$
From equation $\left( 2 \right)$, we have $\csc x=\dfrac{1}{\sin x}$. Substituting $\csc x=\dfrac{1}{\sin x}$ from equation $\left( 2 \right)$ in equation $\left( 8 \right)$, we get,
$\dfrac{2\cos x}{{{\sin }^{2}}x}=\dfrac{2}{\sin x}............\left( 9 \right)$
Cancelling $2$ and $\sin x$ on both the sides of equality in equation $\left( 9 \right)$, we get,
$\begin{align}
& \dfrac{\cos x}{\sin x}=1 \\
& \Rightarrow \cos x=\sin x \\
\end{align}$
Since, $\cos x$ is equal to $\sin x$ for $x=\dfrac{\pi }{4}$, therefore the answer is $x=\dfrac{\pi }{4}$.
Hence the answer is option (b).
Note: There can be more than one answer for this question. Since we had to solve the equation $\cos x=\sin x$ in the final step, we found it’s solution as $x=\dfrac{\pi }{4}$. But we must know that $\cos x=\sin x$ also for $x=\dfrac{5\pi }{4},\dfrac{9\pi }{4},\dfrac{13\pi }{4}......$. So, we must check for all the other options since there can be more than one option correct in a question. In the options of this question, there is only one option which is satisfying the equation $\cos x=\sin x$. That is why we have marked only a single option as a correct option in this question.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE