Answer
Verified
455.1k+ views
Hint: In this question, we will proceed by taking \[x = {\left( 1 \right)^{\dfrac{1}{n}}}\] and then raising on both sides by $n$. Then convert this into an equation and apply binomial expansion. Further substitute $x = 9$ to get the required answer.
Complete step-by-step answer:
Here we have to find the value of given expression \[\left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)\]
Let’s say \[x = {\left( 1 \right)^{\dfrac{1}{n}}}\]
And hence on taking power \[n\] on both sides, we have
$
\Rightarrow {x^n} = {\left( {{1^{\dfrac{1}{n}}}} \right)^n} \\
\Rightarrow {x^n} = 1 \\
\Rightarrow {x^n} - 1 = 0 \\
$
We know that ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Dividing with $x - 1$ on both sides, we have
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Put $x = 9$, then we have
$
\Rightarrow \dfrac{{{9^n} - 1}}{{9 - 1}} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
\Rightarrow \dfrac{{{9^n} - 1}}{8} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
$
And hence the value of $\left( {9 - \omega } \right).\left( {9 - {\omega ^2}} \right).\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)$ is equals to
$ \Rightarrow \dfrac{{{9^n} - 1}}{8}$
Thus, the correct option is C. \[\dfrac{{{9^n} - 1}}{8}\]
So, the correct answer is “Option C”.
Note: Here we have used the binomial expansion ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$. Always remember that $1 + \omega + {\omega ^2} = 0$ and ${\omega ^3} = 1$.
Complete step-by-step answer:
Here we have to find the value of given expression \[\left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)\]
Let’s say \[x = {\left( 1 \right)^{\dfrac{1}{n}}}\]
And hence on taking power \[n\] on both sides, we have
$
\Rightarrow {x^n} = {\left( {{1^{\dfrac{1}{n}}}} \right)^n} \\
\Rightarrow {x^n} = 1 \\
\Rightarrow {x^n} - 1 = 0 \\
$
We know that ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Dividing with $x - 1$ on both sides, we have
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Put $x = 9$, then we have
$
\Rightarrow \dfrac{{{9^n} - 1}}{{9 - 1}} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
\Rightarrow \dfrac{{{9^n} - 1}}{8} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
$
And hence the value of $\left( {9 - \omega } \right).\left( {9 - {\omega ^2}} \right).\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)$ is equals to
$ \Rightarrow \dfrac{{{9^n} - 1}}{8}$
Thus, the correct option is C. \[\dfrac{{{9^n} - 1}}{8}\]
So, the correct answer is “Option C”.
Note: Here we have used the binomial expansion ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$. Always remember that $1 + \omega + {\omega ^2} = 0$ and ${\omega ^3} = 1$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE