
If $1,\omega ,\;{\omega ^2},...............{\omega ^{n - 1}}$ are $n,{n^{th}}$ roots of unity, then the value of \[\left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)\] will be
A. \[\dfrac{{{9^n} + 1}}{8}\]
B. \[{9^n} - 1\]
C. \[\dfrac{{{9^n} - 1}}{8}\]
D. \[{9^n} + 1\]
Answer
583.5k+ views
Hint: In this question, we will proceed by taking \[x = {\left( 1 \right)^{\dfrac{1}{n}}}\] and then raising on both sides by $n$. Then convert this into an equation and apply binomial expansion. Further substitute $x = 9$ to get the required answer.
Complete step-by-step answer:
Here we have to find the value of given expression \[\left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)\]
Let’s say \[x = {\left( 1 \right)^{\dfrac{1}{n}}}\]
And hence on taking power \[n\] on both sides, we have
$
\Rightarrow {x^n} = {\left( {{1^{\dfrac{1}{n}}}} \right)^n} \\
\Rightarrow {x^n} = 1 \\
\Rightarrow {x^n} - 1 = 0 \\
$
We know that ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Dividing with $x - 1$ on both sides, we have
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Put $x = 9$, then we have
$
\Rightarrow \dfrac{{{9^n} - 1}}{{9 - 1}} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
\Rightarrow \dfrac{{{9^n} - 1}}{8} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
$
And hence the value of $\left( {9 - \omega } \right).\left( {9 - {\omega ^2}} \right).\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)$ is equals to
$ \Rightarrow \dfrac{{{9^n} - 1}}{8}$
Thus, the correct option is C. \[\dfrac{{{9^n} - 1}}{8}\]
So, the correct answer is “Option C”.
Note: Here we have used the binomial expansion ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$. Always remember that $1 + \omega + {\omega ^2} = 0$ and ${\omega ^3} = 1$.
Complete step-by-step answer:
Here we have to find the value of given expression \[\left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)\]
Let’s say \[x = {\left( 1 \right)^{\dfrac{1}{n}}}\]
And hence on taking power \[n\] on both sides, we have
$
\Rightarrow {x^n} = {\left( {{1^{\dfrac{1}{n}}}} \right)^n} \\
\Rightarrow {x^n} = 1 \\
\Rightarrow {x^n} - 1 = 0 \\
$
We know that ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Dividing with $x - 1$ on both sides, we have
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$
Put $x = 9$, then we have
$
\Rightarrow \dfrac{{{9^n} - 1}}{{9 - 1}} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
\Rightarrow \dfrac{{{9^n} - 1}}{8} = \left( {9 - \omega } \right)\left( {9 - {\omega ^2}} \right)..................\left( {9 - {\omega ^{n - 1}}} \right) \\
$
And hence the value of $\left( {9 - \omega } \right).\left( {9 - {\omega ^2}} \right).\left( {9 - {\omega ^3}} \right)...............\left( {9 - {\omega ^{n - 1}}} \right)$ is equals to
$ \Rightarrow \dfrac{{{9^n} - 1}}{8}$
Thus, the correct option is C. \[\dfrac{{{9^n} - 1}}{8}\]
So, the correct answer is “Option C”.
Note: Here we have used the binomial expansion ${x^n} - 1 = \left( {x - 1} \right)\left( {x - \omega } \right)\left( {x - {\omega ^2}} \right)...............\left( {x - {\omega ^{n - 1}}} \right)$. Always remember that $1 + \omega + {\omega ^2} = 0$ and ${\omega ^3} = 1$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

