
If \[1,{\log _{10}}\left( {{4^x} - 2} \right),{\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right)\] are in arithmetic progression for a real number \[x\], then the value of determinant \[\left| {\begin{array}{*{20}{c}}
{2[x - \dfrac{1}{2}]}&{x - 1}&{{x^2}} \\
1&0&x \\
x&1&0
\end{array}} \right|\] is equal to
Answer
232.8k+ views
Hint : We are given that \[1,{\log _{10}}\left( {{4^x} - 2} \right),{\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right)\] are in arithmetic progression (A.P) for a real number \[x\]. We have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
{2[x - \dfrac{1}{2}]}&{x - 1}&{{x^2}} \\
1&0&x \\
x&1&0
\end{array}} \right|\].
We will be first finding the value of \[x\] by using the property of AP that in an AP sum of first and third terms gives twice the second term and use the below-mentioned formulae of logarithms. After finding the value of \[x\], we will be substituting that value in the determinant to find the value of the determinant.
Formula used : Following formulae will be useful for solving the given question.
If \[a,a + d,a + 2d\] are in AP then \[2(a + d) = a + a + 2d\]
\[
b\log a = \log {(a)^b} \\
1 + {\log _{10}}a = \log_{10} (10a) \\
\]
Step-by-step Solution:
We know that in an AP sum of first and third terms gives twice the second term, i.e., If \[a,a + d,a + 2d\] are in AP then \[2(a + d) = a + a + 2d\]
So, by using this formula on the terms \[1,{\log _{10}}\left( {{4^x} - 2} \right),{\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right)\], we get
\[2{\log _{10}}\left( {{4^x} - 2} \right) = 1 + {\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right)\]
On using the logarithmic formulae \[b\log a = \log {(a)^b}\], \[1 + {\log _{10}}a = \log_{10}(10a)\], we get
\[
{\log _{10}}{\left( {{4^x} - 2} \right)^2} = 1 + {\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right) \\
{\log _{10}}{\left( {{4^x} - 2} \right)^2} = {\log _{10}}10\left( {{4^x} + (\dfrac{{18}}{5})} \right) \\
\]
We know that if \[\log a = \log b\] then \[a = b\].
So, on using this, we get
\[
{\left( {{4^x} - 2} \right)^2} = 10\left( {{4^x} + (\dfrac{{18}}{5})} \right) \\
{16^x} - 4 \times {4^x} + 4 = 10 \times {4^x} + (\dfrac{{18}}{5}) \times 10 \\
{16^x} - 14 \times {4^x} + 4 - 36 = 0 \\
\]
On further solving, we get
\[
{16^x} - 14 \times {4^x} - 32 = 0 \\
{16^x} + 2 \times {4^x} - 16 \times {4^x} - 32 = 0 \\
{4^x}({4^x} + 2) - 16({4^x} + 2) = 0 \\
({4^x} - 16)({4^x} + 2) = 0 \\
\]
On equating each term with \[0\], we get
\[
{4^x} + 2 = 0 \\
{4^x} = - 2 \\
\]
Through this value of \[x\] cannot be found out.
Also,
\[
{4^x} - 16 = 0 \\
{4^x} = 16 \\
{4^x} = {4^2} \\
\]
On comparing, we get
\[x = 2\]
On substituting, this value in the determinant \[\left| {\begin{array}{*{20}{c}}
{2[x - \dfrac{1}{2}]}&{x - 1}&{{x^2}} \\
1&0&x \\
x&1&0
\end{array}} \right|\], we get
\[
\left| {\begin{array}{*{20}{c}}
{2[2 - \dfrac{1}{2}]}&{2 - 1}&{{2^2}} \\
1&0&2 \\
2&1&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{4 - 1}&1&4 \\
1&0&2 \\
2&1&0
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
3&1&4 \\
1&0&2 \\
2&1&0
\end{array}} \right| \\
= 3(0 - 2 \times 1) - 1(0 - 2 \times 2) + 4(1 \times 1 - 0) \\
= 2 \\
\]
Therefore the value of determinant is \[2\]
Note : Students generally make mistakes while using the property of Arithmetic Progression. Property of AP states that if \[a,a + d,a + 2d\] are in AP then \[2(a + d) = a + a + 2d\]. Students should this formula only to find the required values (here value of \[x\]).
{2[x - \dfrac{1}{2}]}&{x - 1}&{{x^2}} \\
1&0&x \\
x&1&0
\end{array}} \right|\].
We will be first finding the value of \[x\] by using the property of AP that in an AP sum of first and third terms gives twice the second term and use the below-mentioned formulae of logarithms. After finding the value of \[x\], we will be substituting that value in the determinant to find the value of the determinant.
Formula used : Following formulae will be useful for solving the given question.
If \[a,a + d,a + 2d\] are in AP then \[2(a + d) = a + a + 2d\]
\[
b\log a = \log {(a)^b} \\
1 + {\log _{10}}a = \log_{10} (10a) \\
\]
Step-by-step Solution:
We know that in an AP sum of first and third terms gives twice the second term, i.e., If \[a,a + d,a + 2d\] are in AP then \[2(a + d) = a + a + 2d\]
So, by using this formula on the terms \[1,{\log _{10}}\left( {{4^x} - 2} \right),{\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right)\], we get
\[2{\log _{10}}\left( {{4^x} - 2} \right) = 1 + {\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right)\]
On using the logarithmic formulae \[b\log a = \log {(a)^b}\], \[1 + {\log _{10}}a = \log_{10}(10a)\], we get
\[
{\log _{10}}{\left( {{4^x} - 2} \right)^2} = 1 + {\log _{10}}\left( {{4^x} + (\dfrac{{18}}{5})} \right) \\
{\log _{10}}{\left( {{4^x} - 2} \right)^2} = {\log _{10}}10\left( {{4^x} + (\dfrac{{18}}{5})} \right) \\
\]
We know that if \[\log a = \log b\] then \[a = b\].
So, on using this, we get
\[
{\left( {{4^x} - 2} \right)^2} = 10\left( {{4^x} + (\dfrac{{18}}{5})} \right) \\
{16^x} - 4 \times {4^x} + 4 = 10 \times {4^x} + (\dfrac{{18}}{5}) \times 10 \\
{16^x} - 14 \times {4^x} + 4 - 36 = 0 \\
\]
On further solving, we get
\[
{16^x} - 14 \times {4^x} - 32 = 0 \\
{16^x} + 2 \times {4^x} - 16 \times {4^x} - 32 = 0 \\
{4^x}({4^x} + 2) - 16({4^x} + 2) = 0 \\
({4^x} - 16)({4^x} + 2) = 0 \\
\]
On equating each term with \[0\], we get
\[
{4^x} + 2 = 0 \\
{4^x} = - 2 \\
\]
Through this value of \[x\] cannot be found out.
Also,
\[
{4^x} - 16 = 0 \\
{4^x} = 16 \\
{4^x} = {4^2} \\
\]
On comparing, we get
\[x = 2\]
On substituting, this value in the determinant \[\left| {\begin{array}{*{20}{c}}
{2[x - \dfrac{1}{2}]}&{x - 1}&{{x^2}} \\
1&0&x \\
x&1&0
\end{array}} \right|\], we get
\[
\left| {\begin{array}{*{20}{c}}
{2[2 - \dfrac{1}{2}]}&{2 - 1}&{{2^2}} \\
1&0&2 \\
2&1&0
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{4 - 1}&1&4 \\
1&0&2 \\
2&1&0
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
3&1&4 \\
1&0&2 \\
2&1&0
\end{array}} \right| \\
= 3(0 - 2 \times 1) - 1(0 - 2 \times 2) + 4(1 \times 1 - 0) \\
= 2 \\
\]
Therefore the value of determinant is \[2\]
Note : Students generally make mistakes while using the property of Arithmetic Progression. Property of AP states that if \[a,a + d,a + 2d\] are in AP then \[2(a + d) = a + a + 2d\]. Students should this formula only to find the required values (here value of \[x\]).
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

