
If ${10^{18}}$ electrons are taken out every second from a body, then how much time is required to get a total charge of $0.1C$ from it?
(A) $0.625s$
(B) $6.25s$
(C) $62.5s$
(D) $625s$
Answer
486.6k+ views
Hint To solve this question, we need to compute the current flowing through the body by using its basic formula. For this we have to calculate the charge flowing through the body per second from the value of the number of electrons given. Finally, using the values of the current thus obtained, and the value of the charge given, we can get the value of the time required.
The formula which is used in solving this question is given by
$\Rightarrow I = \dfrac{{dq}}{{dt}}$, here $I$ is the current, $q$ is the charge, and $t$ is the time.
Complete step by step answer
We know that the current through a conductor is defined as the rate of flow of charge through it. Mathematically, it can be expressed as
$\Rightarrow I = \dfrac{{dq}}{{dt}}$ (1)
Now, we know that the total charge contained by a given number of electrons is given by
$\Rightarrow q = ne$
According to the question, we have $n = {10^{18}}$. Also we know that $e = 1.6 \times {10^{ - 19}}C$. Substituting these above we get
$\Rightarrow q = {10^{18}} \times 1.6 \times {10^{ - 19}}$
On solving, we get
$\Rightarrow q = 0.16C$
According to the question, this much amount of charge is taken out every second from the body. So we have
$\Rightarrow dq = 0.16C$, and
$\Rightarrow dt = 1s$
Substituting these in (1) we get
$\Rightarrow I = \dfrac{{0.16}}{1}$
$\Rightarrow I = 0.16A$ (2)
Now, from (1) we have
$\Rightarrow I = \dfrac{{dq}}{{dt}}$
Multiplying both sides by $dt$ we have
$\Rightarrow Idt = dq$
From (2)
$\Rightarrow 0.16dt = dq$
Integrating both sides, we get
$\Rightarrow 0.16\int\limits_0^T {dt} = \int\limits_0^Q {dq} $
$\Rightarrow 0.16\left[ t \right]_0^T = \left[ q \right]_0^Q$
On substituting the limits we get
$\Rightarrow 0.16T = Q$
$\Rightarrow T = \dfrac{Q}{{0.16}}$
According to the question, we have $Q = 0.1C$. So we get
$\Rightarrow T = \dfrac{{0.1}}{{0.16}}$
$\Rightarrow T = 0.625s$
Thus, the time required to get a total charge of $0.1C$ from the body is equal to $0.625s$.
Hence, the correct answer is option A.
Note
Instead of calculating the current, we could have used the unitary method to solve this question also. As we are given the amount of charge flowing in one second, so we can calculate the time required to get the given amount of charge by the unitary method.
The formula which is used in solving this question is given by
$\Rightarrow I = \dfrac{{dq}}{{dt}}$, here $I$ is the current, $q$ is the charge, and $t$ is the time.
Complete step by step answer
We know that the current through a conductor is defined as the rate of flow of charge through it. Mathematically, it can be expressed as
$\Rightarrow I = \dfrac{{dq}}{{dt}}$ (1)
Now, we know that the total charge contained by a given number of electrons is given by
$\Rightarrow q = ne$
According to the question, we have $n = {10^{18}}$. Also we know that $e = 1.6 \times {10^{ - 19}}C$. Substituting these above we get
$\Rightarrow q = {10^{18}} \times 1.6 \times {10^{ - 19}}$
On solving, we get
$\Rightarrow q = 0.16C$
According to the question, this much amount of charge is taken out every second from the body. So we have
$\Rightarrow dq = 0.16C$, and
$\Rightarrow dt = 1s$
Substituting these in (1) we get
$\Rightarrow I = \dfrac{{0.16}}{1}$
$\Rightarrow I = 0.16A$ (2)
Now, from (1) we have
$\Rightarrow I = \dfrac{{dq}}{{dt}}$
Multiplying both sides by $dt$ we have
$\Rightarrow Idt = dq$
From (2)
$\Rightarrow 0.16dt = dq$
Integrating both sides, we get
$\Rightarrow 0.16\int\limits_0^T {dt} = \int\limits_0^Q {dq} $
$\Rightarrow 0.16\left[ t \right]_0^T = \left[ q \right]_0^Q$
On substituting the limits we get
$\Rightarrow 0.16T = Q$
$\Rightarrow T = \dfrac{Q}{{0.16}}$
According to the question, we have $Q = 0.1C$. So we get
$\Rightarrow T = \dfrac{{0.1}}{{0.16}}$
$\Rightarrow T = 0.625s$
Thus, the time required to get a total charge of $0.1C$ from the body is equal to $0.625s$.
Hence, the correct answer is option A.
Note
Instead of calculating the current, we could have used the unitary method to solve this question also. As we are given the amount of charge flowing in one second, so we can calculate the time required to get the given amount of charge by the unitary method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
